

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On the rotational invariance for the essential spectrum of λ -Toeplitz operators

Mark C. Ho

Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan

ARTICLE INFO

Article history: Received 6 July 2012 Available online 1 December 2013 Submitted by J.A. Ball

Keywords: Toeplitz operators Composition operators

ABSTRACT

Let λ be a complex number in the closed unit disc, and \mathcal{H} be a separable Hilbert space with the orthonormal basis, say, $\mathcal{E} = \{e_n: n = 0, 1, 2, ...\}$. A bounded operator T on \mathcal{H} is called a λ -*Toeplitz operator* if $\langle Te_{m+1}, e_{n+1} \rangle = \lambda \langle Te_n, e_n \rangle$ (where $\langle \cdot, \cdot \rangle$ is the inner product on \mathcal{H}). The L^2 function $\varphi \sim \sum a_n e^{in\theta}$ with $a_n = \langle Te_0, e_n \rangle$ for $n \ge 0$ and $a_n = \langle Te_n, e_0 \rangle$ for n < 0 is, on the other hand, called the *symbol of T*. Let us denote T by $T_{\lambda,\varphi}$. It can be verified directly that $T_{\lambda,\varphi}$ is an "eigenoperator" associated with the eigenvalue λ for the following map on $\mathcal{B}(\mathcal{H})$:

 $\phi(A) = S^* A S, \quad A \in \mathcal{B}(\mathcal{H}),$

where *S* is the unilateral shift defined by $Se_n = e_{n+1}$, n = 0, 1, 2, ... In an earlier joint work, the author used a result of M.T. Jury regarding the Fredholm theory of a certain Toeplitz-composition C^* -algebra to show that if φ is in the class C^1 and if $|\lambda| = 1$ has finite order, then the essential spectrum of $T_{\lambda,\varphi}$ is "rotationally invariant" with respect to λ , i.e.,

 $\sigma_e(T_{\lambda,\varphi}) = \lambda \sigma_e(T_{\lambda,\varphi}).$

In this paper, we prove that the C^1 restriction for the symbol φ in the above result can be dropped entirely, and the equation actually holds for any φ in L^{∞} and any $|\lambda| = 1$. It turns out that the key for removing the assumption on the smoothness of φ depends only on the definition of $T_{\lambda,\varphi}$ and some very elementary properties of *S* as a Fredholm operator. The applications of this phenomenon for $\sigma_e(T_{\lambda,\varphi})$ include a generalization of A. Wintner's result on the spectra of Toeplitz operators with bounded analytic symbols.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a separable Hilbert space with an orthonormal basis, say, $\mathcal{E} = \{e_n: n = 0, 1, 2, ...\}$. Given $\lambda \in \overline{\mathbb{D}} = \{z \in \mathbb{C}: |z| \leq 1\}$, a bounded operator T is called a λ -*Toeplitz operator* if $\langle Te_{m+1}, e_{n+1} \rangle = \lambda \langle Te_m, e_n \rangle$ (where $\langle \cdot, \cdot \rangle$ is the inner product on \mathcal{H}). In terms of the basis \mathcal{E} , it is easy to see that the matrix representation of T is given by

E-mail address: hom@math.nsysu.edu.tw.

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.11.056

$$\begin{pmatrix} a_{0} & a_{-1} & a_{-2} & a_{-3} & a_{-4} & \cdots \\ a_{1} & \lambda a_{0} & \lambda a_{-1} & \lambda a_{-2} & \lambda a_{-3} & \ddots \\ a_{2} & \lambda a_{1} & \lambda^{2} a_{0} & \lambda^{2} a_{-1} & \lambda^{2} a_{-2} & \ddots \\ a_{3} & \lambda a_{2} & \lambda^{2} a_{1} & \lambda^{3} a_{0} & \lambda^{3} a_{-1} & \ddots \\ a_{4} & \lambda a_{3} & \lambda^{2} a_{2} & \lambda^{3} a_{1} & \lambda^{4} a_{0} & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

for some double sequence $\{a_n: n \in \mathbb{Z}\}$, and the boundedness of T clearly implies that $\sum |a_n|^2 < \infty$. Therefore, it is natural to introduce the notation

$$T = T_{\lambda,\varphi},$$

where $\varphi \sim \sum_{-\infty}^{\infty} a_n e^{in\theta}$ (the symbol of $T_{\lambda,\varphi}$) belongs to $L^2 = L^2(\mathbb{T})$, the Hilbert space of square integrable functions with respect to the Lebesgue measure on the unit circle \mathbb{T} whose inner product is defined by

$$\langle f,g\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} f \,\overline{g} \, d\theta,$$

and consider $T_{\lambda,\varphi}$ as an operator acting on the Hardy space

$$H^{2} = \left\{ f \in L^{2} \colon \int_{0}^{2\pi} f\left(e^{i\theta}\right)e^{in\theta} d\theta = 0, \ n < 0 \right\},$$

with the identification $\mathcal{H} = H^2$ and e_n identified with the function $e^{in\theta}$, $n \ge 0$. It can be checked easily that if $f \sim \sum_{0}^{\infty} a_n e^{i\theta} \in H^2$, then the analytic function

$$\hat{f}(z) := \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(e^{i\theta})}{1 - ze^{-i\theta}} d\theta, \quad |z| < 1,$$

equals the analytic function defined by the series $\sum_{0}^{\infty} a_n z^n$, |z| < 1, and, by classical Fourier analysis and a theorem of Fatou, $\hat{f}_r(e^{i\theta}) = \hat{f}(re^{i\theta}) \rightarrow f(e^{i\theta})$ a.e. θ and in L^2 as $r \rightarrow 1$. Hence H^2 is often identified with the Hilbert space of analytic functions { \hat{f} : $f \in H^2$ }, with inner product

$$\langle \hat{f}, \hat{g} \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} f \,\overline{g} \, d\theta,$$

and therefore the notations $f(e^{i\theta})$ or f(z) will be used freely in this article, and we sometimes call $f(e^{i\theta})$ the boundary value function of the analytic function f(z) (for the theory of Hardy spaces, we refer the readers to Chapter 6 of [4] and [8]).

Other known spaces of functions considered in this paper include: (1) $L^{\infty} = L^{\infty}(\mathbb{T})$, the space of bounded Lebesgue measurable functions on \mathbb{T} ; (2) $C(\mathbb{T})$, the space of continuous functions on \mathbb{T} ; (3) $C^1(\mathbb{T})$, the space of continuously differentiable functions on \mathbb{T} ; (4) $H^{\infty} = H^{\infty}(\mathbb{D})$, the space of bounded analytic functions in \mathbb{D} ; (5) $\mathbb{A} = \mathbb{A}(\mathbb{D})$, the algebra of continuous functions on $\overline{\mathbb{D}}$ which are analytic in \mathbb{D} . Moreover, \mathbb{A} and H^{∞} can be regarded as linear subspaces of H^2 , and we have $\mathbb{A} \subsetneq H^{\infty} \subsetneq H^2.$

Also note that when $\lambda = 1$ and $\varphi \in L^{\infty}$, the matrix of $T_{1,\varphi}$ is the matrix of the bounded Toeplitz operator T_{φ} on H^2 . For the readers who are not familiar with the operator theory on H^2 , the *Toeplitz operator* T_{φ} with symbol $\varphi \in L^{\infty}$ is the operator defined by $T_{\varphi}f = P(\varphi f)$, $f \in H^2$, where P is the projection from L^2 on to H^2 . Here we refer the reader to Chapter 7 of [4] for the theory of Toeplitz operators.

 λ -Toeplitz operators arise in a natural way as the "eigenoperators" for the following map on $\mathcal{B}(\mathcal{H})$ (space of bounded operators on \mathcal{H}):

$$\phi(A) = S^* A S, \quad A \in \mathcal{B}(\mathcal{H}),$$

where *S* is the unilateral shift on \mathcal{H} , i.e., $Se_n = e_{n+1}$, n = 0, 1, 2, ..., as the equation $S^*T_{\lambda,\varphi}S = \lambda T_{\lambda,\varphi}$ can be verified directly. In fact, the map ϕ was considered at the end of the paper [1] by Barría and Halmos as a possible topic for future study.

Download English Version:

https://daneshyari.com/en/article/4616101

Download Persian Version:

https://daneshyari.com/article/4616101

Daneshyari.com