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and the normal operators and unilateral shifts having this property are characterized.
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1. Introduction

If a general theory of multiplicity ever comes to be, it will likely be the case that for any operator A, the operator
A(2) = A ⊕ A has twice the multiplicity of A. As in the case of hermitian operators, it might sometimes be the case that A2

has twice the multiplicity of A and sometimes that it does not. Though this paper will not try to begin a general theory of
multiplicity, it does explore the relationship between A ⊕ A and A2. Specifically it studies operators A such that A ⊕ A and
A2 are similar, a question that has an intrinsic interest independent of any attempt at multiplicity theory.

1.1. Definition. If A ∈ B(H), A satisfies Condition S if A2 ≈ A ⊕ A. Say that A satisfies Condition U if A2 ∼= A ⊕ A. (≈ means
similar and ∼= means unitarily equivalent.)

Realize that for normal operators Condition S and Condition U are the same since two normal operators are similar if
and only if they are unitarily equivalent [1, Corollary IX.6.11].

We will shortly see several examples of operators satisfying Condition S, but for the time being we present only two.

1.2. Example. If S is the unilateral shift, then S satisfies Condition U.

1.3. Example. If A denotes multiplication by the independent variable on L2[0,1], then A does not satisfy Condition S. In
fact since x2 is one-to-one on [0,1], A2 is unitarily equivalent to A; however A ⊕ A has uniform multiplicity 2. On the other
hand, A(∞) , the direct sum of A with itself an infinite number of times, does satisfy Condition S (and therefore Condition U).

The paper is organized as follows. Section 2 presents some spectral properties of operators that satisfy Condition S. In
particular it is shown that such operators have spectral radius 1 and that the only compact operator satisfying Condition S
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is the zero operator. Section 3 gives a complete characterization of the normal operators satisfying Condition S. In Section 4
the unilateral weighted shifts satisfying Condition S as well as those satisfying Condition U are characterized. This results
in a rather simple criterion for a hyponormal weighted shift to satisfy Condition S and the fact that the isometric weighted
shift is the only hyponormal weighted shift that satisfies Condition U.

2. Spectral results

The proofs of the next two results are straightforward. Recall that σe(A) denotes the essential spectrum of A; that is, the
spectrum of the image of A in the Calkin algebra.

2.1. Proposition. If A satisfies Condition S, then σ(A) = σ(A)2 and σe(A) = σe(A)2 .

2.2. Proposition. (a) If A and B satisfy Condition S (or U), then so does A ⊕ B.
(b) A satisfies Condition S (or U) if and only if A∗ does.
(c) If A satisfies Condition S (or U), then so does A2n

for all n ∈ N.

Note that a scalar multiple of an operator satisfying Condition S (or U) satisfies the same condition only if the scalar is
either 0 or 1.

In light of Proposition 2.1 it becomes important for the problem of characterizing the operators satisfying Condition S
to characterize the compact subsets K of C that satisfy K = K 2. At present we cannot do this, but we can make such a
characterization when K is a subset of R.

2.3. Proposition. A compact subset K of R satisfies K = K 2 if and only if one of the following holds:
(a) K = {0};
(b) K = {1};
(c) K = {0,1};
(d) for any r in the open interval (0,1) there is a compact subset D of [r2, r] such that K = ⋃n=∞

n=0 D2n ∪ ⋃n=∞
n=1 D1/2n ∪ {0,1}.

Proof. It is clear that any set K that has the form in parts (a) through (d) must satisfy K = K 2, so we look at the converse.
Assume K = K 2 and assume that none of the conditions (a) through (c) is true; let 0 < r < 1. We first note that K ∩
[r2, r] 
= ∅. In fact if s ∈ K and s 
= 0,1, let n be the smallest natural number such that s2n � r. If it were the case that
s2n � r2, then we would have that s2n−1 � r, a contradiction; so s2n

> r2. That is D = K ∩ [r2, r] 
= ∅. Let L = ⋃n=∞
n=0 D2n ∪⋃n=∞

n=1 D1/2n ∪ {0,1}. Clearly L ⊆ K and L = L2. Using an argument similar to the one used to show that K ∩ [r2, r] 
= ∅ we
can establish the reverse inclusion and thus the equality of K and L. �

The next result is straightforward.

2.4. Proposition. Assume E is a non-empty, bounded subset of C that satisfies E = E2 .
(a) E ⊆ clD.
(b) If E ∩D 
= ∅, then 0 ∈ cl E and cl E ∩ ∂D 
= ∅.
(c) If int E 
= ∅ and E = −E, then (int E)2 = int E.
(d) (cl E)2 = cl E.

The next result illustrates the utility of an extra assumption on sets E such that E = E2. The authors wish to thank the
referee for this suggestion.

2.5. Lemma. If E ⊆ clD and E = E2 = −E, then whenever a ∈ E, E contains a dense set of the circle {z: |z| = |a|}.

Proof. When a = |a|eiα ∈ E , let Ta = {θ ∈ [0,2π ]: aeiθ ∈ E}. The lemma will follow by establishing the following.

Claim. If θ ∈ Ta, then θ + kπ
2n ∈ Ta for 0 � k � 2n+1 , where the addition is modulo 2π .

This is established by induction. Assume n = 1. If θ ∈ Ta , then |a|ei(α+θ) ∈ E; thus −|a|2ei(2α+2θ) ∈ E . Taking square roots
it follows that i|a|ei(α+θ) = |a|ei(α+θ+π/2) ∈ E and |a|ei(α+θ+3π/2) ∈ E . That is, θ + π

2 , θ + 3π
2 ∈ Ta . This says that θ + kπ

2 ∈ Ta

for 0 � k � 4 since the cases k = 2,4 are trivial. The proof of the induction step is similar. �
Note that if E is as in the preceding lemma, then so is clD\E .
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