Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Existence and global asymptotic behavior of positive solutions for nonlinear problems on the half-line

Imed Bachar^{a,*}, Habib Mâagli^b

^a King Saud University, College of Science, Mathematics Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia
 ^b King Abdulaziz University, College of Sciences and Arts, Ragigh Campus, Department of Mathematics, P.O. Box 344, Rabigh 21911, Saudi Arabia

ARTICLE INFO

Article history: Received 7 January 2014 Available online 21 February 2014 Submitted by V. Radulescu

Keywords: Green function Karamata regular variation theory Positive solutions Monotonicity methods

ABSTRACT

In this paper, we aim at studying the existence, uniqueness and the exact asymptotic behavior of positive solutions to the following boundary value problem

 $\left\{ \begin{array}{ll} \displaystyle \frac{1}{A} \big(Au'\big)' + a(t)u^{\sigma} = 0, \quad t \in (0,\infty), \\ \\ \displaystyle \lim_{t \to 0^+} u(t) = 0, \quad \lim_{t \to \infty} \frac{u(t)}{\rho(t)} = 0, \end{array} \right.$

where $\sigma < 1$, A is a continuous function on $[0, \infty)$, positive and differentiable on $(0, \infty)$ such that $\frac{1}{A}$ is integrable on [0, 1] and $\int_0^\infty \frac{1}{A(t)} dt = \infty$. Here $\rho(t) = \int_0^t \frac{1}{A(s)} ds$, for $t \ge 0$ and a is a nonnegative continuous function that is required to satisfy some assumptions related to the Karamata classes of regularly varying functions. Our arguments are based on monotonicity methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In [15], Zhao considered the following problem

$$\begin{cases} u'' + \varphi(., u) = 0, & \text{on } (0, \infty), \\ u > 0, & \text{on } (0, \infty), \\ \lim_{t \to 0^+} u(t) = 0, \end{cases}$$
(1.1)

* Corresponding author.

E-mail addresses: abachar@ksu.edu.sa (I. Bachar), habib.maagli@fst.rnu.tn (H. Mâagli).

where φ is a measurable function on $(0, \infty) \times (0, \infty)$, dominated by a convex positive function. Then he showed that there exists b > 0 such that for each $\mu \in (0, b]$, there exists a positive continuous solution u of (1.1) satisfying $\lim_{t\to\infty} \frac{u(t)}{t} = \mu$.

On the other hand, in [10], Mâagli and Masmoudi generalized the result of Zhao to the more general boundary value problem

$$\begin{cases} \frac{1}{A} (Au')' + f(., u, Au') = 0, & \text{on } (0, \infty), \\ u > 0, & \text{on } (0, \infty), \\ \lim_{t \to 0^+} u(t) = 0, \end{cases}$$
(1.2)

where A is a positive and differentiable function on $(0, \infty)$ and f is a measurable function on $(0, \infty) \times (0, \infty)$, which may change sign and is dominated by a regular function. Then they proved the existence of a constant b > 0 such that for each $\mu \in (0, b]$, problem (1.2) has a continuous solution u satisfying $\lim_{t\to\infty} \frac{u(t)}{\rho(t)} = \mu$, where $\rho(t) = \int_0^t \frac{1}{A(s)} ds$, for $t \ge 0$.

Note also that various existence results for this type of equations have appeared in the literature (see [1-15] and the references therein).

In this paper, we aim at studying the existence, uniqueness and the exact asymptotic behavior of positive solution to the following boundary value problem

$$\begin{cases} \frac{1}{A} (Au')' + a(t)u^{\sigma} = 0, \quad t \in (0, \infty), \\ u > 0, \quad \text{on } (0, \infty), \\ \lim_{t \to 0^+} u(t) = 0, \quad \lim_{t \to \infty} \frac{u(t)}{\rho(t)} = 0, \end{cases}$$
(1.3)

where $\sigma < 1$, A is a continuous function on $[0, \infty)$, positive and differentiable on $(0, \infty)$. We also assume that $\frac{1}{A}$ is integrable on [0, 1] and $\int_0^\infty \frac{1}{A(t)} dt = \infty$. The function ρ is defined by $\rho(t) = \int_0^t \frac{1}{A(s)} ds$, for $t \ge 0$. The nonnegative potential function a is required to be continuous on $(0, \infty)$ that may be singular at 0

The nonnegative potential function a is required to be continuous on $(0, \infty)$ that may be singular at 0 or unbounded near ∞ and satisfying some conditions related to the Karamata classes \mathcal{K} and \mathcal{K}^{∞} (see Definitions 1.1 and 1.2 below).

For the case $\sigma < 0$, the existence and the uniqueness of a positive continuous bounded solution to problem (1.3) is proved in [2, Theorem 2], under the condition that a is a positive continuous function on $(0, \infty)$ satisfying

$$\int_{0}^{\infty} A(s) \min(1, \rho(s)) a(s) \, ds < \infty.$$
(1.4)

Also some estimates for such solution are given. Thus, it is interesting to know the exact asymptotic behavior and to extend the study of (1.3) to $0 \leq \sigma < 1$.

Throughout this paper and without loss of generality, we assume that $\int_0^1 \frac{1}{A(t)} dt = 1$.

To state our result, we need some notations. We first introduce the following Karamata classes of regularly varying functions.

Definition 1.1. The class \mathcal{K} is the set of all Karamata functions L defined on $(0, \eta]$ by

$$L(t) := c \exp\left(\int_{t}^{\eta} \frac{z(s)}{s} \, ds\right),$$

for some $\eta > 1$ and where c > 0 and $z \in C([0, \eta])$ such that z(0) = 0.

Download English Version:

https://daneshyari.com/en/article/4616150

Download Persian Version:

https://daneshyari.com/article/4616150

Daneshyari.com