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In this paper, we aim at studying the existence, uniqueness and the exact asymptotic
behavior of positive solutions to the following boundary value problem

⎧⎪⎪⎨⎪⎪⎩
1
A

(
Au′)′ + a(t)uσ = 0, t ∈ (0,∞),

lim
t→0+

u(t) = 0, lim
t→∞

u(t)
ρ(t)

= 0,

where σ < 1, A is a continuous function on [0,∞), positive and differentiable on
(0,∞) such that 1

A
is integrable on [0, 1] and

∫∞
0

1
A(t) dt = ∞. Here ρ(t) =

∫ t

0
1

A(s) ds,
for t � 0 and a is a nonnegative continuous function that is required to satisfy some
assumptions related to the Karamata classes of regularly varying functions. Our
arguments are based on monotonicity methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In [15], Zhao considered the following problem⎧⎪⎪⎨⎪⎪⎩
u′′ + ϕ(., u) = 0, on (0,∞),
u > 0, on (0,∞),
lim
t→0+

u(t) = 0,
(1.1)
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where ϕ is a measurable function on (0,∞) × (0,∞), dominated by a convex positive function. Then he
showed that there exists b > 0 such that for each μ ∈ (0, b], there exists a positive continuous solution u

of (1.1) satisfying limt→∞
u(t)
t = μ.

On the other hand, in [10], Mâagli and Masmoudi generalized the result of Zhao to the more general
boundary value problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
A

(
Au′)′ + f

(
., u, Au′) = 0, on (0,∞),

u > 0, on (0,∞),
lim
t→0+

u(t) = 0,

(1.2)

where A is a positive and differentiable function on (0,∞) and f is a measurable function on (0,∞) ×
(0,∞) × (0,∞), which may change sign and is dominated by a regular function. Then they proved the
existence of a constant b > 0 such that for each μ ∈ (0, b], problem (1.2) has a continuous solution u

satisfying limt→∞
u(t)
ρ(t) = μ, where ρ(t) =

∫ t

0
1

A(s) ds, for t � 0.
Note also that various existence results for this type of equations have appeared in the literature (see [1–15]

and the references therein).
In this paper, we aim at studying the existence, uniqueness and the exact asymptotic behavior of positive

solution to the following boundary value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
A

(
Au′)′ + a(t)uσ = 0, t ∈ (0,∞),

u > 0, on (0,∞),

lim
t→0+

u(t) = 0, lim
t→∞

u(t)
ρ(t) = 0,

(1.3)

where σ < 1, A is a continuous function on [0,∞), positive and differentiable on (0,∞). We also assume
that 1

A is integrable on [0, 1] and
∫∞
0

1
A(t) dt = ∞. The function ρ is defined by ρ(t) =

∫ t

0
1

A(s) ds, for t � 0.
The nonnegative potential function a is required to be continuous on (0,∞) that may be singular at 0

or unbounded near ∞ and satisfying some conditions related to the Karamata classes K and K∞ (see
Definitions 1.1 and 1.2 below).

For the case σ < 0, the existence and the uniqueness of a positive continuous bounded solution to
problem (1.3) is proved in [2, Theorem 2], under the condition that a is a positive continuous function on
(0,∞) satisfying

∞∫
0

A(s) min
(
1, ρ(s)

)
a(s) ds < ∞. (1.4)

Also some estimates for such solution are given. Thus, it is interesting to know the exact asymptotic behavior
and to extend the study of (1.3) to 0 � σ < 1.

Throughout this paper and without loss of generality, we assume that
∫ 1
0

1
A(t) dt = 1.

To state our result, we need some notations. We first introduce the following Karamata classes of regularly
varying functions.

Definition 1.1. The class K is the set of all Karamata functions L defined on (0, η] by

L(t) := c exp
( η∫

t

z(s)
s

ds

)
,

for some η > 1 and where c > 0 and z ∈ C([0, η]) such that z(0) = 0.
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