

Nonuniform continuity of the solution map to the two component Camassa-Holm system

Lixin Tian, Zhongnan Xia, Pingzheng Zhang*
Department of Mathematics, University of Jiangsu, Jiangsu 212013, PR China

A R T I C L E I N F O

Article history:

Received 28 September 2013
Available online 28 February 2014
Submitted by J. Shi

Keywords:

Two-component Camassa-Holm system
Cauchy problem
Nonuniform continuous

Abstract

We prove that the solution map of the two-component Camassa-Holm system is not uniformly continuous as a map from a bounded subset of the Sobolev space $H^{s}(\mathbb{T}) \times$ $H^{r}(\mathbb{T})$ to $C\left([0,1], H^{s}(\mathbb{T}) \times H^{r}(\mathbb{T})\right)$ when $s \geqslant 1$ and $r \geqslant 0$. We also demonstrate the nonuniform continuous property in the continuous function space $C^{1}(\mathbb{T}) \times C^{1}(\mathbb{T})$. © 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Camassa-Holm (CH) equation

$$
u_{t}+u u_{x}+\left(1-\partial_{x}^{2}\right)^{-1}\left(u^{2}+\frac{1}{2}\left(u_{x}\right)^{2}\right)_{x}=0
$$

was first obtained by Fokas and Fuchssteiner [10] as a bi-Hamiltonian system with infinitely many conservation laws then by Camassa and Holm [1] as a completely integrable model for shallow-water waves. Recently a rigorous justification of the derivation of the CH equation as an approach to the governing equations for water waves was provided by Constantin and Lannes [6]. The CH equation admits peaked solitary waves or "peakons" $[1,21]: u(t, x)=c e^{-|x-c t|}, c \neq 0$, which are smooth except at the crests, where they are continuous, but have a jump discontinuity in the first derivative. The peakons capture a feature that is characteristic for the waves of great height - waves of the largest amplitude that are exact solutions of the governing equations for water waves $[1,4,6,7]$. The CH equation also models wave breaking (i.e. the solution remains bounded while its slope becomes unbounded in finite time) $[4,6,7]$. See [21,22,25] and the references therein for more properties of the CH equation.

[^0]In this paper we consider the following generalized two-component CH system

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}+\left(1-\partial_{x}^{2}\right)^{-1}\left(u^{2}+\frac{1}{2}\left(u_{x}\right)^{2}+\frac{1}{2} \rho^{2}\right)_{x}=0 \tag{1.1}\\
\rho_{t}+(u \rho)_{x}=0
\end{array}\right.
$$

established by Chen, Liu and Zhang [2] that there is a reciprocal transformation between the system and the first negative flow of the AKNS hierarchy. System (1.1) was also rigorously justified by Constantin and Ivanov [5] to approximate the governing equations for shallow water waves, where the variable $u(t, x)$ represents the horizontal velocity of the fluid, and $\rho(t, x)$ is related to the free surface elevation from equilibrium (or scalar density). More recently, Holm, Nraigh and Tronci [15] proposed a modified two-component Camassa-Holm system which possesses singular solutions in component ρ. Clearly if $\rho(t, x) \equiv 0$, system (1.1) returns to the well-known CH equation. The two-component CH system is completely integrable [9,16] as it can be written as a compatibility condition of two linear systems (Lax pair) with a spectral parameter ζ, that is,

$$
\begin{aligned}
\Psi_{x x} & =\left(-\zeta^{2} \rho^{2}+\zeta m+\frac{1}{4}\right) \Psi, \\
\Psi_{t} & =\left(\frac{1}{2 \zeta}-u\right) \Psi_{x}+\frac{1}{2} u_{x} \Psi
\end{aligned}
$$

and has a bi-Hamiltonian structure corresponding to the Hamiltonian

$$
H_{1}=\frac{1}{2} \int\left(m u+(\rho-1)^{2}\right) d x
$$

with $m=u-u_{x x}$ and the Hamiltonian

$$
H_{2}=\frac{1}{2} \int\left(u(\rho-1)^{2}+2 u(\rho-1)+u^{3}+u u_{x}^{2}\right) d x .
$$

There are two Casimirs, i.e. $\int(\rho-1)$ and $\int m$ with periodic boundary conditions, or $u \rightarrow 0$ and $\rho \rightarrow 1$ as $|x| \rightarrow \infty$.

Mathematical properties of (1.1) have been studied in many works. For example, Escher, Lechtenfeld and Yin $[8]$ investigated local well-posedness for the two-component CH system with initial data $\left(u_{0}, \rho_{0}-1\right) \in$ $H^{s}(\mathbb{R}) \times H^{s-1}(\mathbb{R})$ with $s \geqslant 2$ and derived some precise blow-up scenarios for strong solutions to the system. Constantin and Ivanov [5] provided some conditions of wave breaking and small global solutions. Gui and Liu [11] obtained results of local well-posedness in the Besov spaces and wave breaking for certain initial profiles. Zhang and Liu [26] studied the stability of solitary waves for the two-component CH system.

What we will investigate here is the issue related to the well-posedness of (1.1), namely the continuous dependence on the initial data. It is known that if the local well-posedness of solutions to a certain evolutionary PDE can be established by a solely fixed point theorem for contraction mappings, then the data-to-solution map will be Lipschitz on the space where solutions live. For instance the KdV equation is shown to be well-posed in $H^{s}(\mathbb{R})$ with $s>-3 / 4$ and the solution map is Lipschitz on the same $H^{s}(\mathbb{R})$ [18]. One of the key ingredients is the Strichartz estimates achieved from the strong dispersive effect.

When there is no dispersion, cf. the Burgers equation, however, Kato [17] proved the local well-posedness in $H^{k}(\mathbb{R})$ for any integer $k \geqslant 2$ and showed that the dependence on initial data in $H^{k}(\mathbb{R})$ is continuous but not Hölder continuous with any prescribed exponent. The phenomenon of not uniform continuity for some dispersive equations can be found, for example in Kenig, Ponce and Vega [19].

The motivation for this paper comes from the work of Himonas and Misiołek [13] where non-uniform dependence of the solution map for the periodic CH equation on Sobolev spaces $H^{s}(\mathbb{T}), s \geqslant 2$, is proved

https://daneshyari.com/en/article/4616161

Download Persian Version:

https://daneshyari.com/article/4616161

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: tianlx@ujs.edu.cn (L. Tian), znxia@ujs.edu.cn (Z. Xia), pzzhang@ujs.edu.cn (P. Zhang).
 http://dx.doi.org/10.1016/j.jmaa.2014.02.047
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

