Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Infinitely many solutions for a class of semilinear elliptic equations

霐

Yue Wu^{a,*}, Tianqing An^b

^a School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
^b College of Science, Hohai University, Nanjing 210098, China

ARTICLE INFO

Article history: Received 15 November 2012 Available online 8 January 2014 Submitted by J. Mawhin

Keywords: Variational method Asymptotically quadratic Superquadratic Elliptic equation

ABSTRACT

In this paper we find some new conditions to ensure the existence of infinitely many nontrivial solutions for the Dirichlet boundary value problems of the form $-\Delta u + a(x)u = g(x, u)$ in a bounded smooth domain. Conditions $(S_1)-(S_3)$ in the present paper are somewhat weaker than the famous Ambrosetti–Rabinowitz-type superquadratic condition. Here, we assume that the primitive of the nonlinearity g is either asymptotically quadratic or superquadratic as $|u| \to \infty$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this work, we deal with the following elliptic boundary value problem:

$$\begin{cases} -\Delta u + a(x)u = g(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$ $(N \ge 3)$ is bounded domain with smooth boundary $\partial \Omega$, $g \in \mathcal{C}(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$ and $a \in \mathcal{L}^p(\Omega)$, p > N/2. Let $G(x, u) := \int_0^u g(x, s) \, \mathrm{d}s$, then G is of \mathcal{C}^1 class.

In the past decades, problem of the form (1.1) has been extensively studied, see for example, [1-12] and the references therein. For the case that G is of superquadratic growth, most of the results were obtained under the so-called Ambrosetti–Rabinowitz-type superquadratic condition (see, e.g., [1,3,7,8,10]). In recent papers the authors are interested in potentials satisfying conditions which are more general than (AR) condition (see, e.g., [5,6,11,12]). In this paper, we will study the existence of infinitely many nontrivial solutions of (1.1) via the new fountain theorems established in [12]. We divide the problem into the following two cases.

* Corresponding author.

E-mail addresses: wyue007@126.com (Y. Wu), antq@hhu.edu.cn (T. An).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2014.01.003

1.1. The asymptotically quadratic case

Firstly we consider the asymptotically quadratic case. We make the following assumptions:

- (A_1) $G(x,u) \ge 0$ for all $(x,u) \in \Omega \times \mathbb{R}$ and there exist constants $\mu \in (0,2)$ and $R_1 > 0$ such that $ug(x,u) \le \mu G(x,u)$ for all $x \in \Omega$ and $|u| \ge R_1$;
- (A₂) $\lim_{|u|\to 0} \frac{G(x,u)}{|u|^2} = \infty$ uniformly on Ω , and there exist constants $c_2, R_2 > 0$ such that $G(x,u) \leq c_2|u|$ for all $x \in \Omega$ and $|u| \leq R_2$;
- for all $x \in \Omega$ and $|u| \leq R_2$; (A₃) $\liminf_{|u| \to \infty} \frac{G(x,u)}{|u|} \geq d > 0$ uniformly in $x \in \Omega$.

Our first result reads as follows.

Theorem 1.1. If (A_1) – (A_3) hold and G(x, u) is even in u, then problem (1.1) possesses infinitely many solutions.

1.2. The superquadratic case

Next, we consider the superquadratic situation.

 (S_1) There exist constants $2 and <math>a_1 > 0$ such that

$$|g(x,u)| \leq a_1(1+|u|^{p-1}), \quad \forall (x,u) \in \Omega \times \mathbb{R};$$

- (S_2) $G(x,u) \ge 0$ for all $(x,u) \in \Omega \times \mathbb{R}$, and there exist constants $a_2, L_1 > 0$ and q > 2 such that $ug(x,u) \ge a_2|u|^q$ for all $x \in \Omega$ and $|u| \ge L_1$;
- (S_3) there exist constants $\nu < \min\{q-1, N+q-\frac{N}{2}p\}$ and $a_3, L_2 > 0$ such that

$$ug(x,u) \ge \left(2 + \frac{a_3}{|u|^{\nu}}\right) G(x,u), \quad \forall x \in \Omega \text{ and } |u| \ge L_2.$$

We shall prove the following result.

Theorem 1.2. If (S_1) – (S_3) hold and G(x, u) is even in u, then problem (1.1) possesses infinitely many solutions.

Remark 1.3. If we weaken the condition q > 2 in condition (S_2) as $q \ge 2$, and assume $G(x, u)/|u|^2 \to \infty$ as $|u| \to \infty$ uniformly on Ω , one can easily prove that Theorem 1.2 still holds. Then it will be applicable to functions that can't be of q-order growth, e.g. $G(u) = u^2 \ln(e^2 + u^2)$.

Remark 1.4. Theorem 1.1 of this paper improves and extends [10, Theorem 3.7] by replacing the (AR) condition (f_2) by a weaker form. For example let

$$G(u) = |u|^4 + 2|u|^{3.5} \sin^2(2|u|^{0.5}),$$

then it satisfies Theorem 1.2 for N = 3 but not verifying the (AR) condition. We also note that our Theorem 1.2 can be viewed as the complement of [7, Theorem 4] and [6, Theorem 1], which only obtained the existence of a nontrivial solution of (1.1) via the local linking theorem in [7]. In [5], the conditions $(A_1)-(A_4)$ can imply our $(S_1)-(S_3)$. This indicates that Theorem 1.2 in this paper is more general than [5, Theorem 1.1]. Download English Version:

https://daneshyari.com/en/article/4616193

Download Persian Version:

https://daneshyari.com/article/4616193

Daneshyari.com