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In 2002 A. Hartmann and X. Massaneda obtained necessary and sufficient conditions
for interpolation sequences for classes of analytic functions in the unit disc such
that logM(r, f) = O((1 − r)−ρ), 0 < r < 1, ρ ∈ (0,+∞), where M(r, f) =
max{|f(z)|: |z| = r}. Using another method, we give an explicit construction of an
interpolating function in this result. As an application we describe minimal growth
of the coefficient a such that the equation f ′′ + a(z)f = 0 possesses a solution with
a prescribed sequence of zeros.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and results

1.1. Interpolation in the unit disc

Let (zn) be a sequence of different complex numbers in the unit disc D = {z: |z| < 1}, and let σ(z, ζ) =
| z−ζ
1−z̄ζ | denote the pseudohyperbolic distance in D. Let U(z, t) = {ζ ∈ C: |ζ − z| < t}. In the sequel, the

symbol C stands for positive constants which depend on the parameters indicated, not necessarily the same
at each occurrence. We say that the sequence (zn) is uniformly discrete or separated, if infj �=k σ(zk, zj) > 0.
L. Carleson [2,8] considered the problem of description of the so-called universal interpolation sequences or
interpolation sets for the class H∞ of bounded analytic functions in D, i.e. those sequences (zk) in D that
∀(bk) ∈ l∞ there exists f ∈ H∞ with

f(zk) = bk. (1)
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He proved that (zk) is a universal interpolation sequence for H∞ if and only if

∃δ > 0:
∏
j �=k

σ(zj , zk) � δ, k ∈ N. (2)

For the similar problems in Hp see [8, Chap. 9].
For the Banach space A−n, n > 0, of analytic functions such that ‖f‖∞n = supz∈D(1 − |z|)n|f(z)| < ∞,

an interpolation set is defined by the condition that for every sequence (bk) with (bk(1− |zk|)n) ∈ l∞ there
is a function f ∈ A−n satisfying (1). These sets were described by K. Seip in [20]. Namely, necessary and
sufficient that (zk) be an interpolation set for A−n is that (zn) be separated and D+(Z) < n where

D+(Z) = lim
r↑1

sup
z∈D

∑
1
2<σ(z,zj)<r ln 1

σ(z,zj)

ln 1
1−r

. (3)

We note that the condition (2) implies boundedness of the numerator in (3).
For an analytic function f in D we denote M(r, f) = max{|f(z)|: |z| = r}, r ∈ (0, 1). Let nζ(t) =∑
|zk−ζ|�t 1 be the number of the members of the sequence (zk) satisfying |zk − ζ| � t. We write

Nζ(r) =
r∫

0

(nζ(t) − 1)+

t
dt.

The results mentioned above cannot be applied to analytic functions f such that ln 1
1−r = o(lnM(r, f))

(r ↑ 1). In 1956 A.G. Naftalevich [18] described interpolation sequences for the Nevanlinna class. On the
other hand, a description of interpolation sets in the class of analytic functions in the unit disc and of infinite
order of the growth satisfying

∃C > 0 ∀r ∈ (0; 1): ln lnM(r, f) � C ln γ

(
C

1 − r

)
,

where ln γ(t) is a convex function in ln t and ln t = o(ln γ(t)) (t → ∞), was found by B. Vynnyts’kyi and
I. Sheparovych in 2001 [28].

Consider the class of analytic functions such that

∃C > 0 ∀r ∈ (0; 1): lnM(r, f) � Cη

(
C

1 − r

)
, (4)

where η: [1,+∞) → (0,+∞) is an increasing convex function in ln t such that ln t = o(η(t)) (t → ∞). In
2001 in the PhD thesis of the second author [23, Theorem 3.1] (see also [29]) it was proved that given a
sequence (zn) in D, in order that for every (bn) such that

∃C > 0 ∀n ∈ N: log |bn| � Cη

(
C

1 − |zn|

)

there exists an analytic function from the class (4) satisfying (1), it is necessary that

∃δ ∈ (0, 1) ∃C > 0 ∀n ∈ N: Nzn

(
δ
(
1 − |zn|

))
� η

(
C

1 − |zn|

)
. (5)

In 2002 A. Hartmann and X. Massaneda [11] proved that condition (5) is actually necessary and sufficient
for a class of growth functions η containing all power functions. They also described interpolation sequences
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