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The existence and uniqueness of the solution of a fluid–structure interaction problem is
investigated. The proposed analysis distinguishes itself from previous studies by employing
a weighted Sobolev space framework, the DtN operator properties, and the Fredholm
theory. The proposed approach allows to extend the range of validity of the standard
existence and uniqueness results to the case where the elastic scatterer is assumed to be
only Lipschitz continuous, which is of more practical interest.
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1. Introduction

The mathematical analysis and the numerical computation of scattered fields by penetrable objects are very important to
many real-world applications such as radar and sonar detection, geophysical exploration, structural design, medical imaging,
and atmospheric studies. The goal of the proposed study is to investigate the well-posed nature of a class of elasto-acoustic
scattering problems that describes the propagation of a scattered field from an elastic bounded object immersed in an
infinite domain, representing a fluid medium. This class of problems consists in the coupling of Helmholtz equation with
Navier equation.

Helmholtz problems, per se, have been analyzed extensively from both mathematical and numerical viewpoints, and
results pertaining to existence and uniqueness can be found in [9,37,40,49], among others. Likewise, elastic scattering prob-
lems have been also investigated mathematically and numerically, and results pertaining to their well-posedness can be
found in [34,35,41,44]. However, there have been relatively very few mathematical works on problems involving the cou-
pling of Helmholtz and Navier equations. Indeed, to the best of our knowledge, the well-posed nature of the coupling
system has been studied first in [38] and then a few years later in [30]. In reference [38], the authors reformulated the
considered boundary value problem as an integro-differential system whose unknowns are defined on the fluid–structure
interface Γ . Such a transformation was accomplished using an integral representation of both the fluid pressure and struc-
tural displacement fields. In doing this, the authors established existence and uniqueness results assuming the boundary Γ

of the scatterer to be C2, which is a very restrictive condition when considering practical situations. In reference [30], the
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Fig. 1. Problem statement in the infinite domain.

authors adopted a different approach that relies on the integral representation of the fluid pressure only. Yet, the approach
requires also a C2 regularity on the boundary Γ to establish similar existence and uniqueness results. Note that this formu-
lation has been numerically implemented in [16] for solving the corresponding inverse elasto-acoustic scattering problem.
We must point out that the formulation employed in [16] is slightly different than the adopted in [30]. The authors in [16]
consider an artificial exterior boundary surrounding the elastic scatterer, on which an exact boundary condition is imposed
via the integral formulation of the fluid pressure.

We propose here to extend the results obtained in [38] and [16] to the case where the wet surface Γ is assumed to
be only Lipschitz continuous, which is of more practical interest. The proposed proof employs a weighted Sobolev space
framework [20,26], the Dirichlet-to-Neumann (DtN) operator [21,24,47], the Gårding inequality [5,43,45], and the Fredholm
alternative [5,43,45]. More specifically, the proposed proof can be viewed as a four-step approach:

• In step 1, we specify the mathematical framework for the considered boundary value problem (BVP). We construct a
weighted Sobolev-like space that naturally incorporates the asymptotic decay of the fluid pressure variable p as well as
its outgoing propagation nature.

• Step 2 consists in reformulating the BVP in a bounded domain. Unlike the approach used in [30], we prescribe the
exact DtN boundary condition at the exterior spherical-shaped boundary. Note that adopting the weighted Sobolev
space framework and the DtN operator allows to rigorously establish the equivalence between both boundary value
problems. To the best of our knowledge, the equivalence between the BVP and the formulation in the bounded domain
is established rigorously for the first time.

• Step 3 focuses on the boundary value problem formulated in a finite domain. We derive a variational formulation for
this problem, and then, using the sign property of the DtN operator, we prove that the Gårding’s inequality holds.

• Step 4 consists in applying the Fredholm alternative which allows to prove, under minimal condition on the regularity
of the fluid–structure interface Γ , (a) the existence of the solution of the BVP, (b) the uniqueness of the fluid pressure,
and (c) the uniqueness of the structural displacement field modulo Jones frequencies [13,34]. These frequencies may
exist only for a particular class of elastic objects, such as spheres [13,17,29].

The remainder of the paper is organized as follows. In Section 2, we first state the considered mathematical model in the
infinite domain. Then, we introduce the weighted Sobolev space formulation and the formulation in a bounded domain.
Finally, we prove the equivalence between the two formulations. Section 3 is devoted to the mathematical analysis of the
boundary value problem formulated in a bounded domain. More specifically, we state the variational formulation corre-
sponding to this problem. We then establish the equivalence between the strong and the weak formulations, and then
examine the properties of the considered variational problem. In Section 4, we investigate the existence and the uniqueness
of the solution of the resulting variational problem. Using the Fredholm alternative, we prove the existence of the solu-
tion. We then prove that the pressure field is unique, whereas the displacement field is unique modulo Jones frequencies.
Appendix A contains standard analytical results pertaining to the solution of the exterior Helmholtz problems and the cor-
responding DtN mapping in the case of the spherical coordinates system. These results are included only for completeness.

2. The boundary value problem formulations

2.1. Formulation in the infinite domain

Let Ω s be a bounded domain of R
3 representing an elastic obstacle, and Ω f = R

3 \ Ω s be the homogeneous inviscid
(fluid) medium surrounding the elastic domain. Γ is the boundary of Ω s and is assumed to be Lipschitz continuous.

We consider the scattering of a time-harmonic acoustic wave by the elastic obstacle Ω s embedded in Ω f as depicted
in Fig. 1. The corresponding system of equations BVP (1) reads as the coupling of the Helmholtz and Navier equations. This
problem can be formulated as follows:
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