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1. Introduction

Global optimization is a fast growing area of great practical importance. Let (A, d) be a separable metric space and let
f:A— R be a continuous function having its global minimum min f. Without loss of generality we assume that min f =0.
Let

A*={xeA: f(x)=0}.

The function f can be called a problem function and the elements of A* can be called the solutions of the global minimiza-
tion problem. Under some assumptions on the function f, like, for example, the differentiability, deterministic optimization
techniques [21] can be used for solving optimization problems. However, global minima are usually hard to locate. Stochas-
tic optimization techniques [39,38,27] are usually not dependent on the smoothness of the function. At the same time,
if properly configured, these methods can be very effective in finding global solutions. There is great variety of available
techniques, among them we have genetic and evolutionary algorithms [32,31,6,30], Simulated Annealing (SA) [5,37,18] or
swarm intelligence algorithms like Particle Swarm Optimization (PSO) [11,10], Artificial Bee Colony (ABC) [16] or Ant Colony
Optimization (ACO) [14]. Grenade Explosion Method (GEM) [1,2,36] is a technique proposed quite recently. Many algorithms
are new variants or combinations of other methods. Accelerated Random Search (ARS) [4] can be viewed as the modifi-
cation of Pure Random Search (PRS), while Random Multistart algorithms [39] combine global random search and local
deterministic techniques. All the above mentioned iterative optimization techniques (except for some specific modifications,
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for instance non-Markovian versions of Random Multistart are presented in [19]), and many other optimization methods,
can be represented as discrete-time inhomogeneous Markov processes of the form

Xer1 = Te (X, yr), fort=0,1,2,..., (1.1)

where x; is the sequence of states successively transformed by the algorithm, y; is the independent sequence which repre-
sents the randomness of the algorithm and T is the sequence of the methods of the algorithm. The aim of this paper is to
provide a general theoretical framework for the study of the stability and convergence of such optimization processes under
conditions that can be verified in practice. Some applications are presented.

We refer to [9] for the general study of the processes of the form (1.1). As stated there, every Markov Chain given on
a separable metric space has such a representation. Recursions of the form (1.1) have been studied for various purposes,
including optimization, iterated function systems (IFS), fractals, control theory and other applications. Many examples, which
correspond to the time-homogeneous situation, are given in [20,12,15,17]. These references focus mainly on the classical
problem regarding the convergence of processes (1.1), which is how to prove the convergence to the unique stationary
distribution.

This paper extends the results of previous papers [23,22,28,24| which deal with the following problem: Eq. (1.1) induces
a dynamical system determined by the family of Foias operators, which are given on the metric space M(A) of Borel prob-
ability measures on the space A, and the goal is to prove the global attractiveness of the set M* = {u € M(A):u(A*) = 1}.
In the present paper we work under weaker assumptions and hence the convergence results have significantly more appli-
cations compared to the previous results. Sections 6 and 7 present some applications: the general convergence results from
Section 2 are applied to the GEM algorithm (grenade explosion method) and to the evolution strategy (u/p + A). In the
present paper we do not assume that the Foias operators corresponding to the algorithm are continuous (the continuity is
equivalent to the Feller property, see [20,17]) and the assumption (A) of Theorem 1 is used instead. As the continuity is
no longer assumed, the dynamical system corresponding to Eq. (1.1) is in fact a pseudo-dynamical system, see [25]. Addi-
tionally, the compactness assumption of the set U of the algorithm’s parameters and distributions is released and the tg
steps contraction from assumption (Ug) of [24] is replaced with a softer condition. For monotonic methods the important
case when the space A is not compact is covered for the class of functions with compact lower level sets. Still, the basic
convergence assumption is that the inequality [ f(T¢(x, y)v¢(dy)) < f(x) is satisfied for some pairs (T¢, v¢), where v; is the
distribution of Y, and the Lyapunov function technique is used. In paper [35], under the continuity assumption of Foias
operators, the above strong inequality is replaced with a weaker, to steps inequality.

The methodology behind the results of this paper is based on purely topological approach to the stochastic optimiza-
tion. The weak convergence topology on M is considered and the probability theory is used only to interpret the stability
of M* in terms of the algorithm convergence (it may be also useful in applications). The basic convergence condition
[ F(Te(x, y)ve(dy)) < f(x) expresses that the algorithm is capable of reaching regions with smaller function values at one
step starting from x at step t. It connects the algorithm’s parameters values with the topology of the function f. The clas-
sical general convergence results for monotonic search methods which are based on the probability theory either use the
assumption that the algorithm can reach arbitrarily small vicinity of the set of global solutions A* from any position [34] or
are based on conditions hardly verifiable in many practical situations [26]. Many results on the convergence of monotonic
methods are based on this A* accessibility-type assumption, see for instance [36,29,30] for many examples from evolution-
ary optimization. The case of non-monotonic methods is also often analyzed with the use of the classical probability theory,
see for example [5,18,37], the A* accessibility assumption is often released and the analysis is usually more difficult. Markov
chains theory is sometimes used for the convergence analysis, see for example [32] or [3]. However, monotonic methods do
not satisfy proper ergodic-type assumption and many advanced tools of Markov chains are hardly applicable to this case.

This paper is organized as follows. Section 2 presents and discusses the main results of the paper, Theorem 1 and
Theorem 2. In Section 3 and Section 4 we prepare some necessary tools from the stability theory and the weak convergence
of measures. The global asymptotic stability of M* is stated in Theorem 5. In Section 5 this theorem is interpreted in the
terms of the algorithm convergence which proves Theorem 1 and Theorem 2. A reader interested in the applications of the
results from Section 2, not in the theoretical details of the proofs, can omit Sections 3, 4, 5 with no loss of continuity. In
Section 6 we provide sufficient conditions for the convergence of grenade explosion method. In Section 7 the functionality
of Theorem 2 is presented on the (©/p + A) strategy.

2. Theorem 1 and Theorem 2

Let (£2, X, P) be a probability space and let (B,d) be a separable metric space. Let X;:2 — A, t=0,1,..., be a
measurable sequence defined by the nonautonomous recursive equation:

Xep1 = Te(Xe, Yo), (21)

where Y; : 2 — B are independent random variables, the X : £ — A is independent of the sequence Y;, and maps T;: A x
B — A are measurable. Let v; denote the probability distribution of Y, t =0, 1,.... It is clear that the distributions p; of
X; are determined by the initial distribution wg of X¢ and the sequence (T, vy).
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