On the set of points with absolutely convergent trigonometric series

Baowei Wang, Jun Wu*
School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, PR China

A R T I C L E IN F O

Article history:

Received 7 August 2013
Available online 15 November 2013
Submitted by B.S. Thomson

Keywords:

Uniform distribution
Hausdorff dimension

Abstract

Let $\left\{n_{k}\right\}_{k} \geqslant 1$ be a sequence of real numbers. Denote $E\left(\left\{n_{k}\right\}_{k} \geqslant 1\right)$ the set of points for which the trigonometric series $\sum_{k \geqslant 1} \sin \left(n_{k} x\right)$ converges absolutely. It is shown that if $t_{k}:=n_{k+1} / n_{k}$ tends to infinity monotonically, the Hausdorff dimension of $E\left(\left\{n_{k}\right\}_{k} \geqslant 1\right)$ is given by the formula $1-\underset{k \rightarrow \infty}{\lim \sup } \frac{\log k}{\log t_{k}}$; if not, this dimensional formula may be false. This strengthens a former work of Erdös and Taylor.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let $\left\{n_{k}\right\}_{k \geqslant 1}$ be a sequence of real numbers. The distribution of the sequence $\left\{n_{k} x\right\}_{k} \geqslant 1$ is a fundamental topic in number theory (see the book [9] and the references therein). One of the most celebrated works on this topic is Weyl's criterion for uniform distribution [15] (see also [9]). From Weyl's criterion, we know that if there exists a constant $\delta>0$ such that $\left|n_{k}-n_{\ell}\right| \geqslant \delta$ for all $k \neq \ell$, then for almost all $x \in \mathbb{R}$, the sequence $\left\{\left\langle n_{k} x\right\rangle\right\}_{k} \geqslant 1$ is uniformly distributed among the unit interval $[0,1]$, where $\langle\cdot\rangle$ denotes the fractional part.

As a complement to this almost sure result, a natural question is to study the points violating this almost sure result. Erdös asked for the first time whether there exist points x such that $\left\{\left\langle n_{k} x\right\rangle\right\}_{k \geqslant 1}$ can be isolated from zero [5]. This was studied by Pollington [12] and de Mathan [11] who showed that if $\left\{n_{k}\right\}_{k \geqslant 1}$ is a lacunary sequence (that is, there exists $\lambda>1$ such that $n_{k+1} / n_{k} \geqslant \lambda$ for all $k \geqslant 1$), the set of points for which $\left\{\left\langle n_{k} x\right\rangle\right\}_{k} \geqslant 1$ is isolated from zero is of full Hausdorff dimension. Moreover, Boshernitzan [1] showed that if $n_{k+1} / n_{k} \rightarrow 1$ as $k \rightarrow \infty$, the set of points for which $\left\{\left\langle n_{k} x\right\rangle\right\}_{k} \geqslant 1$ is non-dense in $[0,1]$ is of Hausdorff dimension zero. As a further investigation on the points violating the almost sure result, Erdös and Taylor [6] also studied the points x for which $\left\langle n_{k} x\right\rangle$ converges to a given point in a fast speed. More precisely, they considered the dimension of the set

$$
E\left(\left\{n_{k}\right\}_{k \geqslant 1}\right)=\left\{x \in[0, \pi]: \sum_{k \geqslant 1}\left|\sin \left(n_{k} x\right)\right|<\infty\right\}
$$

i.e., the set of points for which the trigonometric series $\sum_{k \geqslant 1} \sin \left(n_{k} x\right)$ converges absolutely. Let $\left\{t_{k}=n_{k+1} / n_{k}\right\}_{k \geqslant 1}$ be the ratios of two consecutive terms of the sequence $\left\{n_{k}\right\}_{k \geqslant 1}$. In [6], they showed that

Theorem 1.1. (See Erdös and Taylor [6].) (1) If $\left\{t_{k}\right\}_{k \geqslant 1}$ is bounded, $E\left(\left\{n_{k}\right\}_{k \geqslant 1}\right)$ is at most countable.
(2) If $\left\{t_{k}\right\}_{k \geqslant 1}$ fulfills the condition that

$$
\begin{equation*}
u k^{\rho} \leqslant t_{k} \leqslant v k^{\rho}, \quad \text { for all } k \geqslant 1 \tag{1}
\end{equation*}
$$

[^0]for some absolute constants $u, v, \rho>0$, the Hausdorff dimension of the set $E\left(\left\{n_{k}\right\}_{k} \geqslant 1\right)$ is given by
$$
\operatorname{dim}_{H} E\left(\left\{n_{k}\right\}_{k \geqslant 1}\right)=1-\frac{1}{\max \{1, \rho\}} .
$$

In this note, we intend to release the condition (1). Our first result is
Theorem 1.2. If $\left\{t_{k}\right\}_{k \geqslant 1}$ tends to infinity monotonically, the dimension of $E\left(\left\{n_{k}\right\}_{k} \geqslant 1\right)$ is given by the formula

$$
\begin{equation*}
\operatorname{dim}_{H} E\left(\left\{n_{k}\right\}_{k \geqslant 1}\right)=1-\min \left\{\limsup _{k \rightarrow \infty} \frac{\log k}{\log t_{k}}, 1\right\}=1-\min \left\{\alpha_{0}, 1\right\} \tag{2}
\end{equation*}
$$

where α_{0} is the convergence exponent of the sequence $\left\{t_{k}\right\}_{k \geqslant 1}$, i.e.

$$
\begin{equation*}
\alpha_{0}=\inf \left\{\alpha \geqslant 0: \sum_{k \geqslant 1} \frac{1}{t_{k}^{\alpha}}<\infty\right\} \tag{3}
\end{equation*}
$$

At the same time, we also provide a counter-example indicating that if $\left\{t_{k}\right\}_{k \geqslant 1}$ does not tend to infinity monotonically, the dimensional formula given in (2) may be false.

Theorem 1.3. There exists a sequence of real numbers $\left\{n_{k}\right\}_{k \geqslant 1}$ such that

$$
\limsup _{k \rightarrow \infty} \frac{\log k}{\log t_{k}}=1, \quad \alpha_{0}=1, \quad \text { but } \operatorname{dim}_{H} E\left(\left\{n_{k}\right\}_{k \geqslant 1}\right)=1
$$

Remark 1.4. With no more difficulties, by the same method used for proving Theorem 1.2, we can show that the same result holds for the set

$$
E\left(\left\{n_{k}, y_{k}\right\}_{k \geqslant 1}\right)=\left\{x \in \mathbb{R}: \sum_{k \geqslant 1}\left|\sin \left(n_{k} x-y_{k}\right)\right|<\infty\right\}
$$

where $\left\{y_{k}\right\}_{k} \geqslant 1$ is any given sequence of reals.
As said before, the set $E\left(\left\{n_{k}\right\}_{k \geqslant 1}\right)$ consists of the points x for which $\left\langle n_{k} x\right\rangle$ tends to zero with a fast speed. In this case, to avoid the possibility that the set $E\left(\left\{n_{k}\right\}_{k} \geqslant 1\right)$ may be empty, the sequence $\left\{n_{k}\right\}_{k} \geqslant 1$ should tend to infinity in a very fast manner. If one's concern is only the convergence of $\left\langle n_{k} x\right\rangle$, things will be much different. Eggleston [4] showed that once $n_{k+1} / n_{k} \rightarrow \infty$, the set of points x for which $\left\langle n_{k} x\right\rangle$ tends to zero is of full Hausdorff dimension. While Bugeaud [2] (see also [3]) showed that, even if n_{k} tends to infinity very slowly there can always exist points x for which $\left\langle n_{k} x\right\rangle$ tends to a given point. More precisely, for any $\xi \in[0,1]$ and any g_{k} tending to infinity as $k \rightarrow \infty$, there exists a sequence $\left\{n_{k}\right\}_{k} \geqslant 1$ with $n_{k} \leqslant k g_{k}$ such that the set

$$
\left\{x \in[0,1]: \lim _{k \rightarrow \infty}\left\langle n_{k} x\right\rangle=\xi\right\}
$$

is non-empty. See also $[8,10,14]$ for the convergence of $\left\langle n_{k} x\right\rangle$ when $\left\{n_{k}\right\}_{k \geqslant 1}$ is the sequence of the denominators of the convergents in the continued fraction expansion of some point.

2. Proof of Theorem 1.2: Lower bound

The following lemma indicates the relationship between the growth speed of $\left\{t_{k}\right\}_{k} \geqslant 1$ and its convergence exponent when $\left\{t_{k}\right\}_{k \geqslant 1}$ is monotone.

Lemma 2.1. (See [13, p. 26].) If $\left\{t_{k}\right\}_{k \geqslant 1}$ is monotonic, its convergence exponent α_{0} and $\limsup _{k \rightarrow \infty} \frac{\log k}{\log t_{k}}$ coincide, i.e.

$$
\begin{equation*}
\alpha_{0}=\limsup _{k \rightarrow \infty} \frac{\log k}{\log t_{k}} \tag{4}
\end{equation*}
$$

From this lemma, the second equality in Theorem 1.2 is trivial.
We begin with a classic lemma concerning the lower bound of the Hausdorff dimension of a set [7, Example 4.6].

https://daneshyari.com/en/article/4616225

Download Persian Version:
https://daneshyari.com/article/4616225

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: bwei_wang@hust.edu.cn (B. Wang), jun.wu@mail.hust.edu.cn (J. Wu).

