

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications



# On the set of points with absolutely convergent trigonometric series





### Baowei Wang, Jun Wu\*

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, PR China

ARTICLE INFO

Article history: Received 7 August 2013 Available online 15 November 2013 Submitted by B.S. Thomson

Keywords: Uniform distribution Hausdorff dimension

#### ABSTRACT

Let  $\{n_k\}_{k\geq 1}$  be a sequence of real numbers. Denote  $E(\{n_k\}_{k\geq 1})$  the set of points for which the trigonometric series  $\sum_{k\geq 1} \sin(n_k x)$  converges absolutely. It is shown that if  $t_k := n_{k+1}/n_k$  tends to infinity monotonically, the Hausdorff dimension of  $E(\{n_k\}_{k\geq 1})$  is given by the formula  $1 - \limsup_{k\to\infty} \frac{\log k}{\log t_k}$ ; if not, this dimensional formula may be false. This strengthens a former work of Erdös and Taylor.

© 2013 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $\{n_k\}_{k \ge 1}$  be a sequence of real numbers. The distribution of the sequence  $\{n_k x\}_{k \ge 1}$  is a fundamental topic in number theory (see the book [9] and the references therein). One of the most celebrated works on this topic is Weyl's criterion for uniform distribution [15] (see also [9]). From Weyl's criterion, we know that if there exists a constant  $\delta > 0$  such that  $|n_k - n_\ell| \ge \delta$  for all  $k \ne \ell$ , then for almost all  $x \in \mathbb{R}$ , the sequence  $\{\langle n_k x \rangle\}_{k \ge 1}$  is uniformly distributed among the unit interval [0, 1], where  $\langle \cdot \rangle$  denotes the fractional part.

As a complement to this almost sure result, a natural question is to study the points violating this almost sure result. Erdös asked for the first time whether there exist points *x* such that  $\{\langle n_k x \rangle\}_{k \ge 1}$  can be isolated from zero [5]. This was studied by Pollington [12] and de Mathan [11] who showed that if  $\{n_k\}_{k \ge 1}$  is a lacunary sequence (that is, there exists  $\lambda > 1$  such that  $n_{k+1}/n_k \ge \lambda$  for all  $k \ge 1$ ), the set of points for which  $\{\langle n_k x \rangle\}_{k \ge 1}$  is isolated from zero is of full Hausdorff dimension. Moreover, Boshernitzan [1] showed that if  $n_{k+1}/n_k \to 1$  as  $k \to \infty$ , the set of points for which  $\{\langle n_k x \rangle\}_{k \ge 1}$  is non-dense in [0, 1] is of Hausdorff dimension zero. As a further investigation on the points violating the almost sure result, Erdös and Taylor [6] also studied the points *x* for which  $\langle n_k x \rangle$  converges to a given point in a fast speed. More precisely, they considered the dimension of the set

$$E(\{n_k\}_{k\geq 1}) = \left\{x \in [0,\pi]: \sum_{k\geq 1} |\sin(n_k x)| < \infty\right\}$$

i.e., the set of points for which the trigonometric series  $\sum_{k \ge 1} \sin(n_k x)$  converges absolutely. Let  $\{t_k = n_{k+1}/n_k\}_{k \ge 1}$  be the ratios of two consecutive terms of the sequence  $\{n_k\}_{k \ge 1}$ . In [6], they showed that

**Theorem 1.1.** (See Erdös and Taylor [6].) (1) If  $\{t_k\}_{k \ge 1}$  is bounded,  $E(\{n_k\}_{k \ge 1})$  is at most countable.

(2) If  $\{t_k\}_{k \ge 1}$  fulfills the condition that

$$uk^{\rho} \leq t_k \leq vk^{\rho}$$
, for all  $k \geq 1$ 

(1)

<sup>\*</sup> Corresponding author.

E-mail addresses: bwei\_wang@hust.edu.cn (B. Wang), jun.wu@mail.hust.edu.cn (J. Wu).

<sup>0022-247</sup>X/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.11.026

for some absolute constants  $u, v, \rho > 0$ , the Hausdorff dimension of the set  $E(\{n_k\}_{k \ge 1})$  is given by

$$\dim_{\mathsf{H}} E(\{n_k\}_{k \ge 1}) = 1 - \frac{1}{\max\{1, \rho\}}$$

In this note, we intend to release the condition (1). Our first result is

**Theorem 1.2.** If  $\{t_k\}_{k \ge 1}$  tends to infinity monotonically, the dimension of  $E(\{n_k\}_{k \ge 1})$  is given by the formula

$$\dim_{\mathsf{H}} E(\{n_k\}_{k \ge 1}) = 1 - \min\left\{\limsup_{k \to \infty} \frac{\log k}{\log t_k}, 1\right\} = 1 - \min\{\alpha_0, 1\}$$

$$\tag{2}$$

where  $\alpha_0$  is the convergence exponent of the sequence  $\{t_k\}_{k \ge 1}$ , i.e.

$$\alpha_0 = \inf \left\{ \alpha \ge 0: \sum_{k \ge 1} \frac{1}{t_k^{\alpha}} < \infty \right\}.$$
(3)

At the same time, we also provide a counter-example indicating that if  $\{t_k\}_{k \ge 1}$  does not tend to infinity monotonically, the dimensional formula given in (2) may be false.

**Theorem 1.3.** There exists a sequence of real numbers  $\{n_k\}_{k \ge 1}$  such that

$$\limsup_{k \to \infty} \frac{\log k}{\log t_k} = 1, \qquad \alpha_0 = 1, \quad but \, \dim_{\mathsf{H}} E\big(\{n_k\}_{k \ge 1}\big) = 1.$$

**Remark 1.4.** With no more difficulties, by the same method used for proving Theorem 1.2, we can show that the same result holds for the set

$$E(\{n_k, y_k\}_{k \ge 1}) = \left\{ x \in \mathbb{R} \colon \sum_{k \ge 1} \left| \sin(n_k x - y_k) \right| < \infty \right\}$$

where  $\{y_k\}_{k \ge 1}$  is any given sequence of reals.

As said before, the set  $E(\{n_k\}_{k \ge 1})$  consists of the points x for which  $\langle n_k x \rangle$  tends to zero with a fast speed. In this case, to avoid the possibility that the set  $E(\{n_k\}_{k \ge 1})$  may be empty, the sequence  $\{n_k\}_{k \ge 1}$  should tend to infinity in a very fast manner. If one's concern is only the convergence of  $\langle n_k x \rangle$ , things will be much different. Eggleston [4] showed that once  $n_{k+1}/n_k \to \infty$ , the set of points x for which  $\langle n_k x \rangle$  tends to zero is of full Hausdorff dimension. While Bugeaud [2] (see also [3]) showed that, even if  $n_k$  tends to infinity very slowly there can always exist points x for which  $\langle n_k x \rangle$  tends to a given point. More precisely, for any  $\xi \in [0, 1]$  and any  $g_k$  tending to infinity as  $k \to \infty$ , there exists a sequence  $\{n_k\}_{k \ge 1}$  with  $n_k \leq kg_k$  such that the set

$$\left\{x \in [0, 1]: \lim_{k \to \infty} \langle n_k x \rangle = \xi\right\}$$

is non-empty. See also [8,10,14] for the convergence of  $\langle n_k x \rangle$  when  $\{n_k\}_{k \ge 1}$  is the sequence of the denominators of the convergents in the continued fraction expansion of some point.

#### 2. Proof of Theorem 1.2: Lower bound

The following lemma indicates the relationship between the growth speed of  $\{t_k\}_{k \ge 1}$  and its convergence exponent when  $\{t_k\}_{k \ge 1}$  is monotone.

**Lemma 2.1.** (See [13, p. 26].) If  $\{t_k\}_{k \ge 1}$  is monotonic, its convergence exponent  $\alpha_0$  and  $\limsup_{k \to \infty} \frac{\log k}{\log t_k}$  coincide, i.e.

$$\alpha_0 = \limsup_{k \to \infty} \frac{\log k}{\log t_k}.$$

From this lemma, the second equality in Theorem 1.2 is trivial. We begin with a classic lemma concerning the lower bound of the Hausdorff dimension of a set [7, Example 4.6]. (4)

Download English Version:

## https://daneshyari.com/en/article/4616225

Download Persian Version:

https://daneshyari.com/article/4616225

Daneshyari.com