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1. Introduction

In this paper, we investigate the global attractivity of first order differential equations of the form

t

X(t) = p(t)[f( / h(X(S))dsM(t,5)> —g(x(r))}, t>0 (11)

T(t)

which model the growth of a single species population with distributed delays in the production (birth) rate f and nonlinear
death (mortality) rate g. The presence of the function p(t) makes it possible to model the growth when the environ-
ment parameters are changing proportionally with time. We assume that p € C[[0, c0), (0, 00)], T € C[[0, 00), R] such that
limy_, 00 T(t) =00, T(t) <t and

(C1) u(t,s) is nondecreasing in s, continuous with respect to t and is normalized so that ff(t) dsu(t,s) =1.
(C2) foh, heCl(a,o00),(0,00)] and g is a positive continuous and increasing function on (a, co) for some a > —oc.

With each solution of (1.1) we associate an initial continuous function ¢ : [—7,0] — (a,c0) where T = —inf{t(t): t €
[0,00)} > 0. The existence and uniqueness of a solution x associated with certain initial function ¢ can be proved using
well known standard techniques; see for example the one used by [6] which in general requires the functions f,h to be
Lipschitzian. Also, for some particular cases of (1.1) as the equation
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B(O)
X(t) = p(t)[f< / h(x(s)) dsfu(t, S)> - ax(t)}, (1.2)

T(t)

where 7(t) < B(t) <t and all t € (0, 00), a method of steps as in [19, Theorem 1.1.3] can be easily used to prove that its
initial value problem has a unique solution without further assumptions on f, h other than their continuity. Therefore, we
focus in this work only on the global attractivity of (1.1) bearing in mind that we deal only with continuously differentiable
solutions on [a, 00).

Eq. (1.1) contains many important known general models from mathematical biology such as the non-autonomous bal-
ance equation

X =p®O[H(xt—1))—g(x®)]. (1.3)

The autonomous version of this equation has been derived by Blythe et al. [5] which in turn includes many important
prototypes such as:

/ _ ﬂOen _
X0 = b — ), (14)
s Bofx(t—T)
X0 = Sy, (15)
X () = px(t — T)e D _sx(t), (1.6)
and
X (t) = pe VXD (). (1.7)

Egs. (1.4) and (1.5) were used by Mackey and Glass [29] in order to describe some physiological control systems. Eq. (1.6) is
the celebrated Nicholson blowflies model which was proposed by Gurney et al. [18]; while Eq. (1.7) was used by Wazewska-
Czyzewska and Lasota [33] as a model of an erythropoietin system. For further results on the dynamical characteristics of
the models (1.4)-(1.7) the reader is referred to [15,17,19,20,24,25,27,28].

Very little research was done on the global attractivity for equations with nonlinear death function in comparison with
equations with linear one. For example; Freedman and Gopalsamy [14] studied the autonomous version of (1.3) which
appears also as a special case of the model studied by Ivanov et al. [22]. Kuang [25] gave many global attractivity criteria
for the equation

X(t) = f( /x(t—l—s)du(s)) — g(x()). (1.8)
-7
Recently, Qian [32] improved some of Kuang's results for the non-autonomous model (1.3). Arino et al. [1] and Berezansky
et al. [2] studied two prototypes of (1.3) when g is quadratic.

In this work, we consider increasing death functions that can be bounded at infinity. Therefore the obtained results
unify, generalize and improve some known global attractivity criteria; particularly our results improve the delay dependent
criteria obtained by [6,22,25,32] and contain those of [1,2]. The obtained results will be applied on models with nonlinear
death function such as a model mentioned by [3]| which has the form

X () =qx(t — 1)e 0 — g(x), (1.9)

where g might have the form: g(x) = 2% with o, b > 0.
We will also be able to obtain sufficient criteria for the global attractivity of the positive equilibrium; say y, of models
of the form

t
Yy (®)=p®)y() [f( f h*(y(s)) dspe(t, S)) - g*(y(t))} (110)
T(t)

In fact, using the transformation y(t) = ye*® which transforms (1.10) to equation of the form (1.1) with h(x(t)) = h*(ye*®)
and g(x(t)) = g*(ye*®), all our results can be restated to (1.10). This will enable us to obtain new global attractivity criteria
for the non-autonomous Mackey-Glass model (see [29])

z(H Mt — 1)}’ >0,
1+2"t—1)

by transforming it to an equation of the form (1.10).

Zt)y=p@®) [a —b
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