Two-term trace estimates for relativistic stable processes

Rodrigo Bañuelos ${ }^{\mathrm{a}, 1}$, Jebessa B. Mijena ${ }^{\text {b }}$, Erkan Nane ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Purdue University, 150 North University Street, West Lafayete, IN 47907-2067, United States
b 221 Parker Hall, Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, United States

A R T I C L E IN F O

Article history:

Received 11 October 2012
Available online 13 September 2013
Submitted by S. Fulling

Keywords:

Relativistic stable process
Trace
Asymptotics

A B S T R A C T

We prove trace estimates for the relativistic α-stable process extending the result of Bañuelos and Kulczycki (2008) in the stable case.

Published by Elsevier Inc.

1. Introduction and statement of main results

For $m>0$, an \mathbb{R}^{d}-valued process with independent, stationary increments having the following characteristic function

$$
\mathbb{E} e^{i \xi \cdot X_{t}^{\alpha, m}}=e^{-t\left\{\left(m^{2 / \alpha}+|\xi|^{2}\right)^{\alpha / 2}-m\right\}}, \quad \xi \in \mathbb{R}^{d}
$$

is called relativistic α-stable process with mass m. We assume that sample paths of $X_{t}^{\alpha, m}$ are right continuous and have left-hand limits a.s. If we put $m=0$ we obtain the symmetric rotation invariant α-stable process with the characteristic function $e^{-t|\xi|^{\alpha}}, \xi \in \mathbb{R}^{d}$. We refer to this process as isotropic α-stable Lévy process. For the rest of the paper we keep α, m and $d \geqslant 2$ fixed and drop α, m in the notation, when it does not lead to confusion. Hence from now on the relativistic α-stable process is denoted by X_{t} and its counterpart isotropic α-stable Lévy process by \widetilde{X}_{t}. We keep this notational convention consistently throughout the paper, e.g., if $p_{t}(x-y)$ is the transition density of X_{t}, then $\tilde{p}_{t}(x-y)$ is the transition density of \widetilde{X}_{t}.

In Ryznar [11] Green function estimates of the Schödinger operator with the free Hamiltonian of the form

$$
\left(-\Delta+m^{2 / \alpha}\right)^{\alpha / 2}-m
$$

were investigated, where $m>0$ and Δ is the Laplace operator acting on $L^{2}\left(\mathbb{R}^{d}\right)$. Using the estimates in Lemma 2.6 below and proof in Bañuelos and Kulczycki (2008) we provide an extension of the asymptotics in [3] to the relativistic α-stable processes for any $0<\alpha<2$.

Brownian motion has characteristic function

$$
\mathbb{E}^{0} e^{i \xi \cdot B_{t}}=e^{-t|\xi|^{2}}, \quad \xi \in \mathbb{R}^{d}
$$

[^0]Let $\beta=\alpha / 2$. Ryznar showed that X_{t} can be represented as a time-changed Brownian motion. Let $T_{\beta}(t), t>0$, denote the strictly β-stable subordinator with the following Laplace transform

$$
\begin{equation*}
\mathbb{E}^{0} e^{-\lambda T_{\beta}(t)}=e^{-t \lambda^{\beta}}, \quad \lambda>0 \tag{1.1}
\end{equation*}
$$

Let $\theta_{\beta}(t, u), u>0$, denote the density function of $T_{\beta}(t)$. Then the process $B_{T_{\beta}(t)}$ is the standard symmetric α-stable process.
Ryznar [11, Lemma 1] showed that we can obtain $X_{t}=B_{T_{\beta}(t, m)}$, where a subordinator $T_{\beta}(t, m)$ is a positive infinitely divisible process with stationary increments with probability density function

$$
\theta_{\beta}(t, u, m)=e^{-m^{1 / \beta} u+m t} \theta_{\beta}(t, u), \quad u>0
$$

Transition density of $T_{\beta}(t, m)$ is given by $\theta_{\beta}(t, u-v, m)$. Hence the transition density of X_{t} is $p(t, x, y)=p(t, x-y)$ given by

$$
\begin{equation*}
p(t, x)=e^{m t} \int_{0}^{\infty} \frac{1}{(4 \pi u)^{d / 2}} e^{\frac{-|x|^{2}}{4 u}} e^{-m^{1 / \beta} u} \theta_{\beta}(t, u) d u \tag{1.2}
\end{equation*}
$$

Then

$$
p(t, x, x)=p(t, 0)=e^{m t} \int_{0}^{\infty} \frac{1}{(4 \pi u)^{d / 2}} e^{-m^{1 / \beta} u} \theta_{\beta}(t, u) d u
$$

The function $p(t, x)$ is a radially symmetric decreasing and that

$$
\begin{equation*}
p(t, x) \leqslant p(t, 0) \leqslant e^{m t} \int_{0}^{\infty} \frac{1}{(4 \pi u)^{d / 2}} \theta_{\beta}(t, u) d u=e^{m t} t^{-d / \alpha} \frac{\omega_{d} \Gamma(d / \alpha)}{(2 \pi)^{d} \alpha} \tag{1.3}
\end{equation*}
$$

where $\omega_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)}$ is the surface area of the unit sphere in \mathbb{R}^{d}. For an open set D in \mathbb{R}^{d} we define the first exit time from D by $\tau_{D}=\inf \left\{t \geqslant 0: X_{t} \notin D\right\}$.

We set

$$
\begin{equation*}
r_{D}(t, x, y)=\mathbb{E}^{x}\left[p\left(t-\tau_{D}, X_{\tau_{D}}, y\right) ; \tau_{D}<t\right] \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{D}(t, x, y)=p(t, x, y)-r_{D}(t, x, y) \tag{1.5}
\end{equation*}
$$

for any $x, y \in \mathbb{R}^{d}, t>0$. For a nonnegative Borel function f and $t>0$, let

$$
P_{t}^{D} f(x)=\mathbb{E}^{x}\left[f\left(X_{t}\right): t<\tau_{D}\right]=\int_{D} p_{D}(t, x, y) f(y) d y
$$

be the semigroup of the killed process acting on $L^{2}(D)$, see, Ryznar [11, Theorem 1].
Let D be a bounded domain (or of finite volume). Then the operator P_{t}^{D} maps $L^{2}(D)$ into $L^{\infty}(D)$ for every $t>0$. This follows from (1.3), (1.4), and the general theory of heat semigroups as described in [7]. It follows that there exists an orthonormal basis of eigenfunctions $\left\{\varphi_{n}: n=1,2,3, \ldots\right\}$ for $L^{2}(D)$ and corresponding eigenvalues $\left\{\lambda_{n}: n=1,2,3, \ldots\right\}$ of the generator of the semigroup P_{t}^{D} satisfying

$$
\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \cdots,
$$

with $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$. By definition, the pair $\left\{\varphi_{n}, \lambda_{n}\right\}$ satisfies

$$
P_{t}^{D} \varphi_{n}(x)=e^{-\lambda_{n} t} \varphi_{n}(x), \quad x \in D, t>0
$$

Under such assumptions we have

$$
\begin{equation*}
p_{D}(t, x, y)=\sum_{n=1}^{\infty} e^{-\lambda_{n} t} \varphi_{n}(x) \varphi_{n}(y) \tag{1.6}
\end{equation*}
$$

In this paper we are interested in the behavior of the trace of this semigroup

$$
\begin{equation*}
Z_{D}(t)=\int_{D} p_{D}(t, x, x) d x \tag{1.7}
\end{equation*}
$$

https://daneshyari.com/en/article/4616281

Download Persian Version:

https://daneshyari.com/article/4616281

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: banuelos@math.purdue.edu (R. Bañuelos), jbm0018@tigermail.auburn.edu (J.B. Mijena), nane@auburn.edu (E. Nane). URLs: http://www.math.purdue.edu/~banuelos (R. Bañuelos), http://www.auburn.edu/~ezn0001 (E. Nane).
 1 R. Bañuelos is supported in part by NSF Grant \# 0603701-DMS.

