

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Two-term trace estimates for relativistic stable processes

Rodrigo Bañuelos^{a,1}, Jebessa B. Mijena^b, Erkan Nane^{b,*}

^a Department of Mathematics, Purdue University, 150 North University Street, West Lafayete, IN 47907-2067, United States
 ^b 221 Parker Hall, Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, United States

ARTICLE INFO

Article history: Received 11 October 2012 Available online 13 September 2013 Submitted by S. Fulling

Relativistic stable process

Keywords

Trace Asymptotics

1. Introduction and statement of main results

For m > 0, an \mathbb{R}^d -valued process with independent, stationary increments having the following characteristic function

$$\mathbb{E}e^{i\xi\cdot X_t^{\alpha,m}} = e^{-t\{(m^{2/\alpha}+|\xi|^2)^{\alpha/2}-m\}}, \quad \xi \in \mathbb{R}^d.$$

is called relativistic α -stable process with mass m. We assume that sample paths of $X_t^{\alpha,m}$ are right continuous and have left-hand limits a.s. If we put m = 0 we obtain the symmetric rotation invariant α -stable process with the characteristic function $e^{-t|\xi|^{\alpha}}$, $\xi \in \mathbb{R}^d$. We refer to this process as isotropic α -stable Lévy process. For the rest of the paper we keep α , mand $d \ge 2$ fixed and drop α , m in the notation, when it does not lead to confusion. Hence from now on the relativistic α -stable process is denoted by X_t and its counterpart isotropic α -stable Lévy process by \widetilde{X}_t . We keep this notational convention consistently throughout the paper, e.g., if $p_t(x - y)$ is the transition density of X_t , then $\widetilde{p}_t(x - y)$ is the transition density of \widetilde{X}_t .

In Ryznar [11] Green function estimates of the Schödinger operator with the free Hamiltonian of the form

$$(-\Delta+m^{2/\alpha})^{\alpha/2}-m$$

were investigated, where m > 0 and Δ is the Laplace operator acting on $L^2(\mathbb{R}^d)$. Using the estimates in Lemma 2.6 below and proof in Bañuelos and Kulczycki (2008) we provide an extension of the asymptotics in [3] to the relativistic α -stable processes for any $0 < \alpha < 2$.

Brownian motion has characteristic function

 $\mathbb{E}^0 e^{i\xi \cdot B_t} = e^{-t|\xi|^2}, \quad \xi \in \mathbb{R}^d.$

ABSTRACT

We prove trace estimates for the relativistic α -stable process extending the result of Bañuelos and Kulczycki (2008) in the stable case.

Published by Elsevier Inc.

^{*} Corresponding author.

E-mail addresses: banuelos@math.purdue.edu (R. Bañuelos), jbm0018@tigermail.auburn.edu (J.B. Mijena), nane@auburn.edu (E. Nane). *URLs*: http://www.math.purdue.edu/~banuelos (R. Bañuelos), http://www.auburn.edu/~ezn0001 (E. Nane).

¹ R. Bañuelos is supported in part by NSF Grant # 0603701-DMS.

⁰⁰²²⁻²⁴⁷X/\$ - see front matter Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jmaa.2013.09.015

Let $\beta = \alpha/2$. Ryznar showed that X_t can be represented as a time-changed Brownian motion. Let $T_{\beta}(t)$, t > 0, denote the strictly β -stable subordinator with the following Laplace transform

$$\mathbb{E}^{0}e^{-\lambda T_{\beta}(t)} = e^{-t\lambda^{\rho}}, \quad \lambda > 0.$$
(1.1)

Let $\theta_{\beta}(t, u)$, u > 0, denote the density function of $T_{\beta}(t)$. Then the process $B_{T_{\beta}(t)}$ is the standard symmetric α -stable process. Ryznar [11, Lemma 1] showed that we can obtain $X_t = B_{T_{\beta}(t,m)}$, where a subordinator $T_{\beta}(t,m)$ is a positive infinitely divisible process with stationary increments with probability density function

$$\theta_{\beta}(t, u, m) = e^{-m^{1/\beta}u + mt}\theta_{\beta}(t, u), \quad u > 0.$$

Transition density of $T_{\beta}(t,m)$ is given by $\theta_{\beta}(t, u - v, m)$. Hence the transition density of X_t is p(t, x, y) = p(t, x - y) given by

$$p(t,x) = e^{mt} \int_{0}^{\infty} \frac{1}{(4\pi u)^{d/2}} e^{\frac{-|x|^2}{4u}} e^{-m^{1/\beta}u} \theta_{\beta}(t,u) \, du.$$
(1.2)

Then

$$p(t, x, x) = p(t, 0) = e^{mt} \int_{0}^{\infty} \frac{1}{(4\pi u)^{d/2}} e^{-m^{1/\beta} u} \theta_{\beta}(t, u) \, du.$$

The function p(t, x) is a radially symmetric decreasing and that

$$p(t,x) \leq p(t,0) \leq e^{mt} \int_{0}^{\infty} \frac{1}{(4\pi u)^{d/2}} \theta_{\beta}(t,u) \, du = e^{mt} t^{-d/\alpha} \frac{\omega_d \Gamma(d/\alpha)}{(2\pi)^d \alpha},\tag{1.3}$$

where $\omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$ is the surface area of the unit sphere in \mathbb{R}^d . For an open set *D* in \mathbb{R}^d we define the first exit time from *D* by $\tau_D = \inf\{t \ge 0: X_t \notin D\}$.

We set

$$r_D(t, x, y) = \mathbb{E}^x \Big[p(t - \tau_D, X_{\tau_D}, y); \tau_D < t \Big],$$
(1.4)

and

$$p_D(t, x, y) = p(t, x, y) - r_D(t, x, y),$$
(1.5)

for any $x, y \in \mathbb{R}^d$, t > 0. For a nonnegative Borel function f and t > 0, let

$$P_t^D f(x) = \mathbb{E}^x \Big[f(X_t) \colon t < \tau_D \Big] = \int_D p_D(t, x, y) f(y) \, dy,$$

be the semigroup of the killed process acting on $L^2(D)$, see, Ryznar [11, Theorem 1].

Let *D* be a bounded domain (or of finite volume). Then the operator P_t^D maps $L^2(D)$ into $L^{\infty}(D)$ for every t > 0. This follows from (1.3), (1.4), and the general theory of heat semigroups as described in [7]. It follows that there exists an orthonormal basis of eigenfunctions { φ_n : n = 1, 2, 3, ...} for $L^2(D)$ and corresponding eigenvalues { λ_n : n = 1, 2, 3, ...} of the generator of the semigroup P_t^D satisfying

$$\lambda_1 < \lambda_2 \leqslant \lambda_3 \leqslant \cdots,$$

with $\lambda_n \to \infty$ as $n \to \infty$. By definition, the pair $\{\varphi_n, \lambda_n\}$ satisfies

$$P_t^D \varphi_n(x) = e^{-\lambda_n t} \varphi_n(x), \quad x \in D, \ t > 0.$$

Under such assumptions we have

$$p_D(t, x, y) = \sum_{n=1}^{\infty} e^{-\lambda_n t} \varphi_n(x) \varphi_n(y).$$
(1.6)

In this paper we are interested in the behavior of the trace of this semigroup

$$Z_D(t) = \int_D p_D(t, x, x) \, dx.$$
(1.7)

Download English Version:

https://daneshyari.com/en/article/4616281

Download Persian Version:

https://daneshyari.com/article/4616281

Daneshyari.com