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1. Introduction and statement of main results

For m > 0, an R%-valued process with independent, stationary increments having the following characteristic function
Relé X" = o=t g 2om) o o Rd

is called relativistic o-stable process with mass m. We assume that sample paths of X{™ are right continuous and have
left-hand limits a.s. If we put m =0 we obtain the symmetric rotation invariant «-stable process with the characteristic
function ek, & € R?. We refer to this process as isotropic o-stable Lévy process. For the rest of the paper we keep o, m
and d > 2 fixed and drop «, m in the notation, when it does not lead to confusion. Hence from now on the relativistic
«-stable process is denoted by X; and its counterpart isotropic o-stable Lévy process by X:. We keep this notational con-
vention consistently throughout the paper, e.g., if p(x — y) is the transition density of X, then p(x — y) is the transition
density of X;.
In Ryznar [11] Green function estimates of the Schodinger operator with the free Hamiltonian of the form

(A +m2/0‘)0[/2 —m

were investigated, where m > 0 and A is the Laplace operator acting on L2(R%). Using the estimates in Lemma 2.6 below
and proof in Bafiuelos and Kulczycki (2008) we provide an extension of the asymptotics in [3] to the relativistic «-stable

processes for any 0 <« < 2.
Brownian motion has characteristic function
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Let B = /2. Ryznar showed that X; can be represented as a time-changed Brownian motion. Let Tg(t), t > 0, denote the
strictly B-stable subordinator with the following Laplace transform

RO Ts® — =t 5 S 0. (11)

Let 0 (t, u), u > 0, denote the density function of Tg(t). Then the process Br,) is the standard symmetric «-stable process.
Ryznar [11, Lemma 1] showed that we can obtain X; = Br,( m), where a subordinator Tg(t,m) is a positive infinitely
divisible process with stationary increments with probability density function

Op(t,u,m) =e ™" Mg ) w0,
Transition density of Tg(t,m) is given by 6g(t, u — v,m). Hence the transition density of X; is p(t,x,y) =p(t,x —y)
given by
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The function p(t, x) is a radially symmetric decreasing and that
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where wy = ﬁ’(TTd//ZZ) is the surface area of the unit sphere in R%. For an open set D in R? we define the first exit time from D
by Tp =inf{t > 0: X; ¢ D}.
We set
rp(t, x,y) =EX[p(t — tp, Xz, ¥): Tp <], (1.4)
and
pp(t,x, y) =p(t,x,y) —rp(t, X, y), (15)

for any x, y € R4, t > 0. For a nonnegative Borel function f and t > 0, let

PP f(x) =B*[f(X0): t <] =/pD(t, x, ) f(y)dy,

D

be the semigroup of the killed process acting on L2(D), see, Ryznar [11, Theorem 1].

Let D be a bounded domain (or of finite volume). Then the operator PtD maps L%(D) into L*(D) for every t > 0. This
follows from (1.3), (1.4), and the general theory of heat semigroups as described in [7]. It follows that there exists an
orthonormal basis of eigenfunctions {g,: n=1,2,3,...} for L>(D) and corresponding eigenvalues {},: n=1,2,3,...} of
the generator of the semigroup PP satisfying

AM<A2<A3<ee,
with A, — 0o as n — oo. By definition, the pair {¢y, ,} satisfies

—Ant

PPon(x) =e *tp,(x), xeD, t>0.

Under such assumptions we have

Po(t.%,y) =Y e gn()@n(y). (16)

n=1

In this paper we are interested in the behavior of the trace of this semigroup

Zp(t) z/po(t,x, x)dx. (1.7)
D
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