

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Irreducible representations of free products of matrix algebras

Jiren Zhou¹

Department of Mathematics, Shanghai Institute of Technology, Shanghai 201418, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 4 April 2013 Available online 11 September 2013 Submitted by R. Curto

Keywords: Free product Irreducible representation In this paper, we give a characterization of irreducible representation of $*_{i=1}^{m} M_{n_i}(\mathbb{C})$ into $M_{kN}(\mathbb{C})$, where $k \in \mathbb{N}$ and the least common multiple N of n_1, \ldots, n_m is finite. We also give a necessary condition for the existence of irreducible representation of $*_{i=1}^{m} M_{n_i}(\mathbb{C})$ into $M_{kN}(\mathbb{C})$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A C^* -algebra U is a complex Banach algebra with an involution that satisfies the additional condition $||T^*T|| = ||T||^2$ for $T \in U$. Every C^* -algebra can be viewed as a normed-closed self-adjoint subalgebra of B(H).

By a representation of a C^* -algebra \mathcal{U} on a Hilbert space H, we mean a *-homomorphism ρ from \mathcal{U} into B(H). In addition, ρ is one-to-one (hence, a *-isomorphism), it is described as a faithful representation. The Gelfand–Naimark theorem shows that every C^* -algebra has a faithful representation on some Hilbert space.

Suppose that \mathcal{U} is a C^* -algebra and that φ and ψ are representations of \mathcal{U} on Hilbert spaces H and K, respectively. We say that φ and ψ are (unitarily) equivalent if there is an isomorphism U from H onto K such that $\psi(A) = U\varphi(A)U^*$ for any A in \mathcal{U} . (For more on the operator theory, see [10,11,14].)

The reduced free product of C^* -algebras with specified states on them was introduced independently by Avitzour [1] and Voiculescu [15].

For the basic properties of free probability theory, we refer the reader to [5,13,17].

Using the free probability theory, Voiculescu [16] proved that the free group von Neumann algebra does not have Cartan subalgebras and solved a longstanding question in finite von Neumann algebra. Many other powerful applications of free probability to questions on operator algebras are due to Ge, Dykema, Shlyakhenko and other mathematicians. (See [2,4,7,8].)

There are many literatures studying the structure of reduced free products of C^* -algebras. In [3,6], Dykema studied the reduced free product of a finite family of finite dimensional abelian C^* -algebras and the von Neumann algebra free products of finite dimensional von Neumann algebras. In [9], Ivanov found a necessary and sufficient condition for the simplicity and uniqueness of trace for reduced free products of finite families of finite dimensional C^* -algebras with specified traces on them.

Recently, several authors considered the representations of the free product of C^* -algebras. In [12], the authors gave a characterization of the irreducible representations of the free product $M_2(\mathbb{C}) * M_2(\mathbb{C})$.

In this paper, we will consider the representations of the free product of matrix algebras.

In Section 2, we characterize the representation of $M_n(\mathbb{C})$ into a C^* -algebra \mathcal{U} . We also give an explicit expression of a representation of $M_n(\mathbb{C})$ into $M_{kn}(\mathbb{C})$.

E-mail address: zhoujiren1983@163.com.

¹ This work is supported by The Training Programme for the Universities Young Teachers of Shanghai (No. 405ZK11YQ25 - yyy11059).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.09.004

In Section 3, we consider the representation of $*_{i=1}^{m} M_n(\mathbb{C})$ into $M_{kn}(\mathbb{C})$. We give a characterization of irreducible representation of $*_{i=1}^{m} M_n(\mathbb{C})$ into $M_{kn}(\mathbb{C})$ and give a necessary condition for the existence of irreducible representation of $*_{i=1}^{m} M_n(\mathbb{C})$ into $M_{kn}(\mathbb{C})$.

In Section 4, we consider the case of representations of $*_{i=1}^m M_{n_i}(\mathbb{C})$ into $M_{kN}(\mathbb{C})$, where N is the least common multiple of n_1, \ldots, n_m . We give a characterization of irreducible representation of $*_{i=1}^m M_{n_i}(\mathbb{C})$ into $M_{kN}(\mathbb{C})$ and give a necessary condition for the existence of irreducible representation of $*_{i=1}^m M_{n_i}(\mathbb{C})$ into $M_{kN}(\mathbb{C})$.

2. Representations of $M_n(\mathbb{C})$ $(n \ge 2)$

Theorem 2.1. Let \mathcal{U} be a unital C^* -algebra and $\{T_i\}_{i=1}^{n-1} \subseteq \mathcal{U}$. Then the following conditions are equivalent.

(1) There is a unital *-homomorphism $\pi : M_n(\mathbb{C}) \to \mathcal{U}$ such that $\pi(e_{i,i+1}) = T_i$, i = 1, 2, ..., n-1; (2) $T_1 T_1^* + \sum_{i=1}^{n-1} T_i^* T_i = I$, $T_i^* T_i = T_{i+1} T_{i+1}^*$ for i = 1, ..., n-2, $T_i T_j = 0$ for $j \neq i+1$ and $T_i T_j^* = 0$ for j < i.

Proof. (1) \Rightarrow (2): If there is a unital *-homomorphism $\pi : M_n(\mathbb{C}) \rightarrow \mathcal{U}$ such that $\pi(e_{i,i+1}) = T_i, i = 1, 2, ..., n-1$, then

$$T_i T_j = \pi (e_{i,i+1}) \pi (e_{j,j+1}) = \pi (e_{i,i+1} e_{j,j+1}) = 0$$

for $j \neq i + 1$,

$$T_i T_j^* = \pi (e_{i,i+1}) \left(\pi (e_{j,j+1}) \right)^* = \pi (e_{i,i+1}) \pi (e_{j+1,j}) = \pi (e_{i,i+1} e_{j+1,j}) = 0$$

for j < i,

$$T_i^* T_i = \pi \left(e_{i,i+1}^* \right) \pi \left(e_{i,i+1} \right) = \pi \left(e_{i+1,i} e_{i,i+1} \right) = \pi \left(e_{i+1,i+1} \right) = \pi \left(e_{i+1,i+2} e_{i+2,i+1} \right)$$
$$= \pi \left(e_{i+1,i+2} \right) \left(\pi \left(e_{i+1,i+2} \right) \right)^* = T_{i+1} T_{i+1}^*$$

for i = 1, ..., n - 2 and

$$T_1T_1^* + \sum_{i=1}^{n-1} T_i^*T_i = \pi(e_{1,1}) + \sum_{i=1}^{n-1} \pi(e_{i+1,i+1}) = \pi\left(e_{1,1} + \sum_{i=1}^{n-1} e_{i+1,i+1}\right) = \pi(I) = I_{\mathcal{U}}.$$

 $(2) \Rightarrow (1)$: Define $\pi : M_n(\mathbb{C}) \to \mathcal{U}$ by

$$\pi\left((a_{i,j})_{n\times n}\right) = \sum_{j>i} a_{i,j}T_i\cdots T_{j-1} + \sum_{j$$

for any $(a_{i,j})_{n \times n} \in M_n(\mathbb{C})$.

Thus

$$\begin{aligned} \pi(e_{1,1}) &= T_1 T_1^*, \quad \pi(e_{1,2}) = T_1, \quad \dots, \quad \pi(e_{1,n}) = T_1 \cdots T_{n-1}, \\ \pi(e_{2,1}) &= T_1^*, \quad \pi(e_{2,2}) = T_1^* T_1 = T_2 T_2^*, \quad \dots, \quad \pi(e_{2,n}) = T_2 \cdots T_{n-1}, \\ \pi(e_{3,1}) &= T_2^* T_1^*, \quad \pi(e_{3,2}) = T_2^*, \quad \dots, \quad \pi(e_{3,n}) = T_3 \cdots T_{n-1}, \\ &\vdots \\ \pi(e_{n,1}) &= T_{n-1}^* \cdots T_1^*, \quad \pi(e_{n,2}) = T_{n-1}^*, \quad \dots, \quad \pi(e_{n,n}) = T_{n-1}^* T_{n-1}. \end{aligned}$$

It is easy to check that π is a unital *-homomorphism and $\pi(e_{i,i+1}) = T_i$. \Box

Thus every unital *-homomorphism $\pi : M_n(\mathbb{C}) \to B(H)$ is determined by some T_1, \ldots, T_{n-1} in B(H).

Theorem 2.2. Suppose that $\{T_i\}_{i=1}^{n-1} \subseteq B(H)$. Then the following conditions are equivalent.

- (1) $T_1T_1^* + \sum_{i=1}^{n-1} T_i^*T_i = I$, $T_i^*T_i = T_{i+1}T_{i+1}^*$ for i = 1, ..., n-2, $T_iT_j = 0$ for $j \neq i+1$ and $T_iT_j^* = 0$ for j < i.
- (2) There exists an orthonormal basis $\bigcup_{k=1}^{n} \{e_i^{(k)}, i \in I\}$ of H such that $T_k(e_i^{(k+1)}) = e_i^{(k)}, k = 1, ..., n-1$ and $T_m(e_i^{(k)}) = 0, k \neq m+1, k = 1, ..., n; m = 1, ..., n-1$ and $i \in I$ where I is an index set.

Download English Version:

https://daneshyari.com/en/article/4616283

Download Persian Version:

https://daneshyari.com/article/4616283

Daneshyari.com