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Forced term

1. Introduction

In this paper, we study the flow

dF 1
E:(E—c)v:zfv (1.1)

where
Fi:=F(,t): S" — R"!

is a family of closed hypersurfaces with M; = F¢(S™). H denotes the mean curvature of M; w.r.t. outer unit normal vector v,
and c is a constant.

For ¢ =0, this flow is called inverse mean curvature flow. Inverse mean curvature flow is an important method to derive
the energy estimates in General Relativity, one can see Huisken and Ilmanen [8]. In [19], Urbas proved that for inverse mean
curvature flow the surfaces stay strictly convex and smooth for all time. Furthermore, the surfaces become more and more
spherical in the process. The similar results have also been obtained for star-shaped initial data with H > 0, see Urbas [18]
and Gerhardt [3]. In [9], Huisken and Ilmanen proved a sharp lower bound of mean curvature, from which they proved that
if the initial surface is strictly star-shaped and H > 0, the smooth solution of the inverse mean flow will exist for all time
and converge to a manifold.

The curvature flows with forced term have been studied extensively. For mean curvature flow with external force field,
which is a model describing the Ginzburg-Landau vortex, one can refer to [10,12-16]. There are also some other evolution
equations for geometric quantities for general speeds, see e.g. [2,4].

In this paper, we want to find out how the force term c affects the flow. First we will prove that the flow preserve the
convexity.
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Theorem 1.1. Suppose the initial data My of the flow (1.1) is strictly convex, then the strict convexity of the hypersurfaces is preserved
during the evolution.

For different c, we see that the flow (1.1) has different properties. The flow (1.1) may expand the surface if ¢ is small
enough (e.g. ¢ =0 [19]), or contract if c is large enough. The next theorem will tell us how the forced term c affects the
flow.

1

Theorem 1.2. Suppose My is a strictly convex hypersurface. If ¢ < ¢ on Mo, the flow (1.1) will expand the convex hypersurface for all

time. And if we let M = e‘%‘Mt, M, will converge in C* topology to a sphere. If c > % on My, the flow (1.1) will contract the convex
hypersurface to a point in finite time.

In our paper, strict convexity shall be defined as all the eigenvalues of the second fundamental form of the surface being
positive. For the proof of Theorem 1.1, we will follow the method of Schulze in [17], and work directly with Eq. (1.1). To
prove the expanding convex hypersurface will converge to a sphere after rescaling, we use the method of support function
which is used as the main method in [19]. To prove that the convex hypersurface contracts to a point when ¢ > we
mainly use the comparison principle.

This paper is organized as follows. In Section 2, we will give some notations and preliminaries. Moreover, we will give
some evolution equations and obtain the short-time existence of the flow (1.1). Then in Section 3, we prove the flow
preserving convexity by studying the evolution equation of the inverse of the second fundamental form. In Section 4, we
prove that when ¢ > % on Mo, the hypersurface will contract to a point. In Section 5, we prove that if ¢ < % on My, the
hypersurface will expand and finally complete the proof of Theorem 1.2.

1
H(0)’

2. Preliminaries

If M is given as in Section 1 and F denotes its parametrization in R™t!, the metric {gij} are given by

dF (x) 8F(x)>

s e M.
0X; 0X;j

gij (%) =<

Let V and A denote the Levi-Civita connection and the Laplace-Beltrami operator on M respectively. Indices are raised and
lowered w.rt. g/ and gij. Einstein’s notation is used for summation. We will use (,) to denote the standard scalar product
on R",

The second fundamental form in direction v is denoted by

hij(x) = —(v, V;V;F),
the norm of the second fundamental form is given by
|AI” = g"gPhiphyj,
and the mean curvature on M is given by
H= gijh,-j.
First, we have the following evolution equations for various geometric quantities under flow (1.1).

Proposition 2.1. Suppose flow (1.1) holds true for t € [0, T) with T < oo, then we have the following equations on M; forallt € [0, T):

0 =2fhi; (21)

dgli o

S =—2fhug"g, (22)
t

d_tu = —V;V;f + fhihy, (23)

dH

— =—Af— flA]% 2.4

I f—rflA| (24)

Proof. The evolution equations have been established in many papers, one can see [9,10,13] for details. O

Next, we will give the evolution of f.
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