

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

H^2 regularity for the p(x)-Laplacian in two-dimensional convex domains

Leandro M. Del Pezzo^{a,*}, Sandra Martínez^b

- ^a CONICET and Departamento de Matemática, FCEyN, UBA, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina
- ^b IMAS-CONICET and Departamento de Matemática, FCEyN, UBA, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina

ARTICLE INFO

Article history: Received 3 August 2011 Available online 17 September 2013 Submitted by Goong Chen

Keywords: Variable exponent spaces Elliptic equations H^2 regularity

ABSTRACT

In this paper we study the H^2 global regularity for solutions of the p(x)-Laplacian in twodimensional convex domains with Dirichlet boundary conditions. Here $p:\Omega\to [p_1,\infty)$ with $p\in \operatorname{Lip}(\overline\Omega)$ and $p_1>1$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^2 and let $p:\Omega\to(1,+\infty)$ be a measurable function. In this work, we study the H^2 global regularity of the weak solution of the following problem

$$\begin{cases}
-\Delta_{p(x)}u = f & \text{in } \Omega, \\
u = g & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where $\Delta_{p(x)}u = \text{div}(|\nabla u|^{p(x)-2}\nabla u)$ is the p(x)-Laplacian. The hypothesis over p, f and g will be specified later.

Note that, the p(x)-Laplacian extends the classical Laplacian $(p(x) \equiv 2)$ and the p-Laplacian $(p(x) \equiv p \text{ with } 1 . This operator has been recently used in image processing and in the modeling of electrorheological fluids, see [3,5,24].$

Motivated by the applications to image processing problems, in [8], the authors study two numerical methods to approximate solutions of the type of (1.1). In Theorem 7.2, the authors prove the convergence in $W^{1,p(\cdot)}(\Omega)$ of the conformal Galerkin finite element method. It is of our interest to study, in a future work, the rate of this convergence. In general, all the error bounds depend on the global regularity of the second derivatives of the solutions, see for example [6,22]. However, there appear to be no existing regularity results in the literature that can be applied here, since all the results have either a first order or local character.

The H^2 global regularity for solutions of the *p*-Laplacian is studied in [22]. There the authors prove the following: Let $1 , <math>g \in H^2(\Omega)$, $f \in L^q(\Omega)$ (q > 2) and u be the unique weak solution of (1.1). Then:

• If $\partial \Omega \in C^2$ then $u \in H^2(\Omega)$:

E-mail addresses: ldpezzo@dm.uba.ar (L.M. Del Pezzo), smartin@dm.uba.ar (S. Martínez). URL: http://cms.dm.uba.ar/Members/ldpezzo (L.M. Del Pezzo).

Supported by UBA X117, UBA 20020090300113, CONICET PIP 2009 845/10 and PIP 11220090100625.

^{*} Corresponding author.

- If Ω is convex and g = 0 then $u \in H^2(\Omega)$;
- If Ω is convex with a polygonal boundary and $g \equiv 0$ then $u \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$.

Regarding the regularity of the weak solution of (1.1) when f=0, in [1,7], the authors prove the $C^{1,\alpha}_{loc}$ regularity (in the scalar case and also in the vectorial case). Then, in the paper [15] the authors study the case where the functional has the so-called (p,q)-growth conditions. Following these ideas, in [17], the author proves that the solutions of (1.1) are in $C^{1,\alpha}(\overline{\Omega})$ for some $\alpha>0$ if Ω is a bounded domain in \mathbb{R}^N ($N\geqslant 2$) with $C^{1,\gamma}$ boundary, p(x) is a Hölder function, $f\in L^\infty(\Omega)$ and $g\in C^{1,\gamma}(\overline{\Omega})$; while in [4], the authors prove that the solutions are in $H^2_{loc}(\{x\in\Omega\colon p(x)\leqslant 2\})$ if p(x) is uniformly Lipschitz (Lip (Ω)) and $f\in W^{1,q(\cdot)}_{loc}(\Omega)\cap L^\infty(\Omega)$.

Our aim, it is to generalize the results of [22] in the case where p(x) is a measurable function. To this end, we will need some hypothesis over the regularity of p(x). Moreover, in all our result we can avoid the restriction g = 0, assuming some regularity of g(x).

On the other hand, to prove our results, we can assume weaker conditions over the function f than the ones on [4]. Since, we only assume that $f \in L^{q(\cdot)}(\Omega)$, we do not have a priori that the solutions are in $C^{1,\alpha}(\Omega)$. Then we cannot use it to prove the H^2 global regularity. Nevertheless, we can prove that the solutions are in $C^{1,\alpha}(\overline{\Omega})$, after proving the H^2 global regularity.

The main results of this paper are:

Theorem 1.1. Let Ω be a bounded domain in \mathbb{R}^2 with C^2 boundary, $p \in \text{Lip}(\overline{\Omega})$ with $p(x) \ge p_1 > 1$, $g \in H^2(\Omega)$ and u be the weak solution of (1.1). If

```
(F1) f \in L^{q(\cdot)}(\Omega) with q(x) \ge q_1 > 2 in the set \{x \in \Omega : p(x) \le 2\};
```

(F2) $f \equiv 0$ in the set $\{x \in \Omega : p(x) > 2\}$,

then $u \in H^2(\Omega)$.

Theorem 1.2. Let Ω be a bounded domain in \mathbb{R}^2 with convex boundary, $p \in \text{Lip}(\overline{\Omega})$ with $p(x) \geqslant p_1 > 1$, $g \in H^2(\Omega)$ and u be the weak solution of (1.1). If f satisfies (F1) and (F2) then $u \in H^2(\Omega)$.

Using the above theorem we can prove the following:

Corollary 1.3. Let Ω be a bounded convex domain in \mathbb{R}^2 with polygonal boundary, p and f as in the previous theorem, $g \in W^{2,q(\cdot)}(\Omega)$ and g be the weak solution of (1.1) then $g \in C^{1,\alpha}(\overline{\Omega})$ for some $0 < \alpha < 1$.

Observe that this result extends the one in [17] in the case where Ω is a polygonal domain in \mathbb{R}^2 .

Organization of the paper. The rest of the paper is organized as follows. After a short Section 2 where we collect some preliminary results, in Section 3, we study the H^2 -regularity for the non-degenerated problem. In Section 4 we prove Theorem 1.1. Then, in Section 5, we study the regularity of the solution u of (1.1) if Ω is convex. In Section 6, we make some comments on the dependence of the H^2 -norm of u on p_1 . Lastly, in Appendices A and B we give some results related to elliptic linear equation with bounded coefficients and Lipschitz functions, respectively.

2. Preliminaries

We now introduce the spaces $L^{p(\cdot)}(\Omega)$ and $W^{1,p(\cdot)}(\Omega)$ and state some of their properties.

Let Ω be a bounded open set of \mathbb{R}^n and $p:\Omega\to [1,+\infty)$ be a measurable bounded function, called a variable exponent on Ω and denote $p_1:=essinf\ p(x)$ and $p_2:=essup\ p(x)$.

We define the variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ to consist of all measurable functions $u:\Omega\to\mathbb{R}$ for which the modular

$$\varrho_{p(\cdot)}(u) := \int_{\Omega} \left| u(x) \right|^{p(x)} dx$$

is finite. We define the Luxemburg norm on this space by

$$\|u\|_{L^{p(\cdot)}(\varOmega)}:=\inf\bigl\{k>0\colon \varrho_{p(\cdot)}(u/k)\leqslant 1\bigr\}.$$

This norm makes $L^{p(\cdot)}(\Omega)$ a Banach space.

For the proofs of the following theorems, we refer the reader to [12].

Download English Version:

https://daneshyari.com/en/article/4616292

Download Persian Version:

https://daneshyari.com/article/4616292

Daneshyari.com