
Real-time fault injection using enhanced on-chip debug infrastructures

André V. Fidalgo a,⇑, Manuel G. Gericota a, Gustavo R. Alves a, José M. Ferreira b

a Instituto Superior de Engenharia do Porto, Polytechnic Institute of Porto, Portugal
b Faculdade de Engenharia da Universidade do Porto, University of Porto, Portugal

a r t i c l e i n f o

Article history:
Available online 28 October 2010

Keywords:
Dependability
Fault injection
On-chip debug
Real-time systems
Microprocessors

a b s t r a c t

The rapid increase in the use of microprocessor-based systems in critical areas, where failures imply risks
to human lives, to the environment or to expensive equipment, significantly increased the need for
dependable systems, able to detect, tolerate and eventually correct faults. The verification and validation
of such systems is frequently performed via fault injection, using various forms and techniques. However,
as electronic devices get smaller and more complex, controllability and observability issues, and some-
times real time constraints, make it harder to apply most conventional fault injection techniques. This
paper proposes a fault injection environment and a scalable methodology to assist the execution of
real-time fault injection campaigns, providing enhanced performance and capabilities. Our proposed
solutions are based on the use of common and customized on-chip debug (OCD) mechanisms, present
in many modern electronic devices, with the main objective of enabling the insertion of faults in micro-
processor memory elements with minimum delay and intrusiveness. Different configurations were
implemented starting from basic Components Off-The-Shelf (COTS) microprocessors, equipped with
real-time OCD infrastructures, to improved solutions based on modified interfaces, and dedicated OCD
circuitry that enhance fault injection capabilities and performance. All methodologies and configurations
were evaluated and compared concerning performance gain and silicon overhead.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Most of today’s safety–critical applications require some type of
computer-based device, broadening the application range of
microprocessor systems. As electronic systems increase in com-
plexity and decrease in size, their correct behavior is becoming
harder to guarantee [1]. The higher sensitiveness to noise and
other factors increases the probability of errors, even for devices
used in non-hostile environments. The most frequent hazard
affecting microprocessor systems is usually referred as a Single
Event Upset (SEU) and consists of a change of state of a flip-flop,
induced by an ionizing particle such as a cosmic ray or proton. This
event may change the logical value of memory elements, such as
registers or memory cells [2].

The verification and validation of dependable systems requires
the study of failures and errors in order to evaluate their probabil-
ity of occurrence and subsequent effects. The possibly destructive
nature of a failure and the long error latencies make it difficult to
identify their causes in the operational environment, and recom-
mend the organization of experiments under precisely controlled
conditions. Depending on the system function and architecture,

hardware [3] and software [4] fault tolerance techniques can be
used to minimize the effects of SEUs, enabling the system to pro-
vide acceptable service in their presence. All vulnerable critical
systems should be verified to ensure operation within acceptable
limits in the presence of such events, and validated to check if they
accomplish their intended objectives. Fault injection can be used
both to evaluate fault tolerance implementations and to estimate
fault consequences on non-tolerant systems.

When dealing with microprocessors, the main limitations im-
posed on fault injection are control, internal access, intrusiveness
and performance. Ideally a fault injection methodology should al-
low precise control of fault insertion, both in time and space, com-
plete replicability of experiments, and access to all microprocessor
resources. Simultaneously it should require no modifications to the
target software or hardware, and should execute in real time. As
this is not technically feasible, all fault injection environments
are based on acceptable (or possible) trade-offs. Access to the area
where faults are to be inserted is a major problem, often requiring
either ad hoc [5], intrusive [6], or low-controllability [7] ap-
proaches. The first and second solutions require special hardware
or modifications to running software, offer restricted coverage,
and may be difficult to execute in real-time. The third solution is
usually based on contactless fault injection techniques, making
fault synchronization and replication hard or impossible to guaran-
tee. OCD infrastructures have been used as an efficient alternative

0141-9331/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2010.10.002

⇑ Corresponding author. Tel.: +351 228340500; fax: +351 228321159.
E-mail addresses: anf@isep.ipp.pt (A.V. Fidalgo), mgg@isep.ipp.pt (M.G. Gericota),

gca@isep.ipp.pt (G.R. Alves), jmf@fe.up.pt (J.M. Ferreira).

Microprocessors and Microsystems 35 (2011) 441–452

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2010.10.002
mailto:anf@isep.ipp.pt
mailto:mgg@isep.ipp.pt
mailto:gca@isep.ipp.pt
mailto:jmf@fe.up.pt
http://dx.doi.org/10.1016/j.micpro.2010.10.002
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


to handle such problems [8] and the addition of circuitry to evalu-
ate the vulnerability to SEU effects is increasingly accepted at the
design stage [9].

This paper proposes a set of fault injection solutions enabled by
debug features that are now present in recent microprocessor de-
vices. The proposed fault injection environment was designed to be
non-intrusive and to allow real time emulation of SEU effects in the
microprocessor memory. Real time operation requirements may
indeed justify the use of modified OCD infrastructures in order to
provide better fault injection capabilities and/or performance.
The rationale behind the proposed solutions is that microprocessor
systems dependability would benefit from enhancements aimed at
improving fault injection operations, making them viable from
both economical and technical viewpoints. The modified OCDs pro-
posed in this paper are based on the use of wider data link with an
external debugger, or on the use of a dedicated fault injection mod-
ule, with low overhead and higher autonomy. More intrusive fault
modules were also considered as a way to increase fault coverage
on safety–critical devices, enabling the insertion of precisely con-
trolled faults on internal registers or protected memory.

The next section summarizes the state of the art and prelimin-
ary research. Section 3 presents our proposed solutions, including
the experimental environment and application methodology. Sec-
tion 4 presents the experimental results obtained during the
course of this work. Finally, Section 5 presents the main conclu-
sions, and suggests directions for future research.

2. State of the art

2.1. Real-time fault injection in microprocessors

Real time usually designates systems that must provide ade-
quate response within a specified time window. In this case,
dependability is harder to implement and more troublesome to
evaluate. The correctness of the results must be checked and accu-
rate meeting of deadlines is mandatory, without modifying or
stopping the target system.

Real-time fault injection must be executed with the target sys-
tem running at full speed, with minimum intrusiveness and delays.
Most traditional fault injection approaches cannot be adequately
used under these constraints. Simulation based fault injection
can be useful on early stages of development, but it is often
time-consuming and intrinsically dependent on the quality of the
available model [10,11]. Additionally, it is very difficult to imple-
ment a model that accurately represents all the delays and other
timing aspects, and a different technique must be used once a pro-
totype (or production model) is available. Software fault injection
adds fault insertion routines, causing extra delays and limiting
the fault targets to those areas accessible by the application code.
Although work on this area has shown that it can be used for some
real-time systems [12], it presents considerable limitations in
terms of intrusiveness and coverage. The need to slow down or
stop the running application also makes it inconvenient to apply
most contact fault injection techniques, since they degrade system
performance. Most technical solutions to this problem rely on con-
tactless fault injection [7] or on special dedicated infrastructures
[13], both of which are complex and expensive. Contactless tech-
niques present controllability and replicability problems, concern-
ing precise control of the instant and location of a fault. Dedicated
fault injection infrastructures come together with silicon overhead
and often require special prototype versions of the target system,
hardly or even not adaptable to the final product. Additionally, ac-
cess to internal blocks where faults are more probable, generally
the memory elements and communication buses, is also problem-
atic, particularly without disturbing the running applications.

Recent approaches to real-time fault injection include improved
software techniques [14], halting the target with minimal delay for
near real-time fault injection [15] or taking advantage of recent
FPGA capabilities [16,17]. As many of today’s microprocessors
incorporate dedicated OCD circuitry, designed to operate indepen-
dently of the target system resources, their use for fault injection
purposes is becoming increasingly popular.

2.2. Fault injection via OCD

The OCD implementations present in different families of
microprocessors share common characteristics that form a core
feature set, usually including run control, breakpoint support,
and memory and register access. Some devices offer more ad-
vanced features such as watchpoints, program trace and real time
debug capabilities. In general terms, an OCD is a combination of
hardware and software embedded onto the microprocessor chip,
accessible through an interface port, and usually requiring an
external debugger.

OCD infrastructures provide access to internal resources during
system operation, being an excellent mechanism for modifying
register and/or memory values, i.e. for inserting faults, and subse-
quently retrieving the data necessary to assess the effect of those
faults. In most cases, OCD fault injection techniques rely on halting
the processor, via control signals or breakpoints [18].

The major problem of on-chip debugging is the lack of a consis-
tent set of capabilities and a standard communication interface
across processor architectures. Standard ports (RS232, JTAG) are
commonly used for the physical connection [19,20], but their capa-
bilities vary widely. Several standardization efforts for OCD infra-
structures and interfaces were initiated on recent years [21–23].
IEEE-ISTO 5001, The Nexus 5001 Forum Standard for a Global Embed-
ded Processor Debug Interface [24], was the first of these efforts and
is currently well documented and stable.

To better evaluate the advantages and limitations of real-time
fault injection on NEXUS compliant microprocessors, preliminary
work was performed using COTS devices. This approach was simi-
lar to other research works [8,25], and used a commercial target
microprocessor and a debugger.

The obtained results confirmed most of the expected benefits
and simultaneously identified some shortcomings, both in fault
triggering and performance. It proved that it is possible to insert
faults in memory without affecting the running application and
to use the trace information as an effective means of analyzing
the program flow, before and after fault activation. However, as
the fault injection campaigns must be run on the host machine,
the operating system (Windows or Unix) and physical connection
to the NEXUS compliant debugger (Ethernet or USB) lead to long
and non-deterministic memory access times. The consequence is
the occurrence of experiments with inconclusive results, since in
such cases the fault actually inserted does not emulate a single
bit-flip as intended. Depending on the targeted memory area, the
actual percentage of inconclusive fault insertions could be as high
as 50%, requiring additional debugging and result analysis for val-
idating each experiment.

The triggering source represents an additional source of prob-
lems. The use of trace data proved unreliable due to variable com-
munication delays, making it necessary to use an external trigger
signal. As a consequence, it was impossible to synchronize the fault
insertion and the events of the running application.

To overcome the identified problems, three solutions were
developed to enhance real-time fault injection capabilities: (1) a
debugger customized for fault injection, (2) higher bandwidth be-
tween the debugger and the OCD, and (3) the migration of some
capabilities into the OCD infrastructure itself.

442 A.V. Fidalgo et al. / Microprocessors and Microsystems 35 (2011) 441–452



Download English Version:

https://daneshyari.com/en/article/461631

Download Persian Version:

https://daneshyari.com/article/461631

Daneshyari.com

https://daneshyari.com/en/article/461631
https://daneshyari.com/article/461631
https://daneshyari.com

