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a b s t r a c t

In this paper, we study a hydrodynamical system modeling the deformation of the
vesicle membrane under external incompressible viscous flow fields. The system is in the
Eulerian formulation and is governed by the coupling of the incompressible Navier–Stokes
equations with a phase field equation. In the three dimensional case, we establish two
logarithmically improved blow-up criteria for local smooth solutions of this system in
terms of the vorticity field only in the homogeneous Besov spaces.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there have been many numerical and theoretical studies on the configurations and deformations of elastic
vesicle membranes under external flow fields [3,4,6–9,17,19,24,25]. The single component vesicle membranes are possibly
the simplestmodels for the biological cells andmolecules andhavewidely studied in biology, biophysics and bioengineering.
Such vesicle membranes can be formed by certain amphiphilic molecules assembled in water to build bilayers, and exhibit
a rich set of geometric structures in various mechanical, physical and biological environments [7]. In order to model and
understand the formation and dynamics of vesicle membranes and the fluid–structure interaction, one approach is to
consider equations of elasticity for the vesicle membranes and the Navier–Stokes equations for the fluid. However, the
model established in this approach is very difficult to study and numerically simulate due to the fact that the description for
elasticity is in the Lagrangian coordinate (Hooke’s law) and for fluids is in the Eulerian coordinate. To overcome this difficulty,
in [4,7], the authors established a phase field Navier–Stokes vesicle–fluid interaction model for the vesicle shape dynamics
in flow fields via the phase field approach. In this model, the vesicle membrane Γ is described by a phase function φ, which
is a labeling function defined on computational domain Q . The function φ takes value +1 inside the vesicle membrane and
−1 outside, with a thin transition layer of width characterized by a small (compared to the vesicle size) positive parameter
ε. Obviously, the sharp transition layer of the phase function gives a diffusive interface description of the vesicle membrane
Γ , which is recovered by the zero level set {x : φ(x) = 0}. The advantage of introducing such a phase function φ is to
formulate the original Lagrangian description of the membrane evolution in the Eulerian coordinates. On the other hand,
the viscous fluid is modeled by the incompressible Navier–Stokes equations with unit density and with an external force
defined in terms of φ.
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In this paper, we study the three dimensional phase field Navier–Stokes vesicle–fluid interactionmodel subjecting to the
periodic boundary conditions (i.e., in torus T3), which reads as follows:

∂tu + u · ∇u + ∇P = µ1u +
δE(φ)
δφ

∇φ in Q × [0, T ], (1.1)

∇ · u = 0 in Q × [0, T ], (1.2)

∂tφ + u · ∇φ = −γ
δE(φ)
δφ

in Q × [0, T ] (1.3)

with the initial conditions

u(x, 0) = u0(x) with ∇ · u0 = 0, and φ(x, 0) = φ0(x) for x ∈ Q , (1.4)

and the boundary conditions

u(x + ei, t) = u(x, t), φ(x + ei, t) = φ(x, t) for x ∈ ∂Q × [0, T ], i = 1, 2, 3, (1.5)

where the set of vectors {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} denotes an orthonormal basis of R3 and Q is the
unit square in R3. Here u = (u1, u2, u3) ∈ R3 and P ∈ R denote the unknown velocity vector field and the unknown
scalar pressure of the fluid, respectively. φ ∈ R is the phase function of the vesicle membrane Γ . E(φ) denotes the physical
approximation/regularization of theHelfrich elastic bending energy for the vesiclemembranewhich is given by (cf. [4,6,8,9])

E(φ) = Eε(φ)+
1
2
M1(A(φ)− α)2 +

1
2
M2(B(φ)− β)2 (1.6)

with

Eε(φ) =
k
2ε


Q

|f (φ)|2dx and f (φ) = −ε1φ +
1
ε
(φ2

− 1)φ, (1.7)

where ε is a small positive parameter that characterizes the thickness of the transition layer of the phase function, M1 and
M2 are two penalty constants which are introduced to enforce the volume

A(φ) =


Q
φ dx (1.8)

and the surface area

B(φ) =


Q


ε

2
|∇φ|

2
+

1
4ε
(φ2

− 1)2

dx (1.9)

of the vesicle conserved (in time), and α = A(φ0) and β = B(φ0) are determined by the initial value of the phase function
φ0. The positive constants ν, k, and γ denote, respectively, the viscosity of the fluid, the bending modulus of the vesicle,
and the mobility coefficient. δE(φ)

δφ
is the so-called chemical potential that denotes the variational derivative of E(φ) in the

variable φ. Note that, if we denote

g(φ) = −1f (φ)+
1
ε2
(3φ2

− 1)f (φ), (1.10)

then a direct calculation yields that the variation of the approximate elastic energy is given by (see [4,6])
δE(φ)
δφ

= kg(φ)+ M1(A(φ)− α)+ M2(B(φ)− β)f (φ)

= kε∆2φ −
k
ε
∆(φ3

− φ)−
k
ε
(3φ2

− 1)1φ +
k
ε3
(3φ2

− 1)(φ2
− 1)φ

+M1(A(φ)− α)+ M2(B(φ)− β)f (φ). (1.11)
The system (1.1)–(1.3) describes thedynamic evolution of vesiclemembranes immersed in an incompressible, Newtonian

fluid, using an energetic variational approach [4,7] (see [5,6,9,21,24] for numerical simulations and other studies). In 2007,
Du, Li and Liu in [4] studied well-posedness of the system (1.1)–(1.3) subjecting to the no-slip boundary condition for the
velocity field and the Dirichlet boundary condition for the phase function, by using the modified Galerkin argument, the
authors established the global existence of weak solutions and the basic energy inequality

d
dt


1
2
∥u(·, t)∥2

L2 + E(φ(·, t))


+ µ∥∇u(·, t)∥2

L2 + γ

δE(φ)δφ

2
L2

= 0, ∀t > 0. (1.12)

Moreover, the authors also proved that the weak solution is unique under an additional regularity assumption u ∈

L8(0, T ; L4(Q )). Recently, local in time existence and uniqueness of the strong solution to the system (1.1)–(1.3) have been
established in [19], and under the assumptions that the initial data and the quantity (|Q | + α)2 are sufficiently small, the
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