
Reconciling usability and interactive system architecture using patterns

Ahmed Seffah *, Taleb Mohamed, Halima Habieb-Mammar, Alain Abran
Human-Centered Software Engineering Group, Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada

a r t i c l e i n f o

Article history:
Received 26 July 2005
Received in revised form 9 April 2008
Accepted 10 April 2008
Available online 4 May 2008

Keywords:
Usability
User interface design patterns
Software architecture
Usability factors
Software quality metrics
HCI design principles

a b s t r a c t

Traditional interactive system architectures such as MVC [Goldberg, A., 1984. Smaltalk-80: The Interac-
tive Programming Environment, Addison-Wesley Publ.] and PAC [Coutaz, J., 1987. PAC, an implementa-
tion model for dialog design. In: Interact’87, Sttutgart, September 1987, pp. 431–436; Coutaz, J., 1990.
Architecture models for interactive software: faillures and trends. In: Cockton, G. (Ed.), Engineering for
Human–Computer Interaction, Elsevier Science Publ., pp. 137–153.] decompose the system into subsys-
tems that are relatively independent, thereby allowing the design work to be partitioned between the
user interfaces and underlying functionalities. Such architectures extend the independence assumption
to usability, approaching the design of the user interface as a subsystem that can designed and tested
independently from the underlying functionality. This Cartesian dichotomy can be fallacious, as function-
alities buried in the application’s logic can sometimes affect the usability of the system. Our investiga-
tions model the relationships between internal software attributes and externally visible usability
factors. We propose a pattern-based approach for dealing with these relationships. We conclude by dis-
cussing how these patterns can lead to a methodological framework for improving interactive system
architectures, and how these patterns can support the integration of usability in the software design
process.

� 2008 Published by Elsevier Inc.

1. Introduction

Software architecture is defined as the fundamental design
organizations of a system; they are embodied in its components,
their relationships to each other and the environment, and the
principles governing its design, development and evolution
[ANSI/IEEE Std 1471-2000, Recommended Practice for Architec-
tural Description of Software-Intensive Systems]. In addition, it
encapsulates the fundamental entities and properties of the appli-
cation that generally insure the quality of application (Kazman
et al., 2000).

In the field of interactive systems engineering, architectures of
the 1980s and 1990s such as MVC (Goldberg, 1984) and PAC (Cou-
taz, 1987, 1990) are based on the principle of separating the func-
tionality from the user interface. The functionality is what the
software actually does and what information it processes. The user
interface defines how this functionality is presented to end-users
and how the users interact with it. The underlying assumption is
that usability, the ultimate quality factor, is primarily a property
of the user interface. Therefore separating the user interface from
the application’s logic makes it easy to modify, adapt or customize

the interface after user testing. Unfortunately, this assumption
does not ensure the usability of the system as a whole.

We now realize that system features can have an impact on the
usability of the system, even if they are logically independent from
the user interface and not necessarily visible to the user. Bass ob-
served that even if the presentation of a system is well designed,
the usability of a system could be greatly compromised if the
underlying architecture and designs do not have the proper provi-
sions for user concerns (Bass et al., 2001; Raskin, 2000). We pro-
pose that software architecture should define not only the
technical interactions needed to develop and implement a product,
but also interactions with the users.

At the core of this vision is that invisible components can affect
usability. By invisible components, we mean any software entity or
architectural attribute that does not have visible cues on the pre-
sentation layer. They can be an operation, data, or a structural
attribute of the software. Examples of such phenomena are com-
monplace in database modeling. Queries that were not anticipated
by the modeler, or that turn out to be more frequent than expected,
can take forever to complete because the logical data model (or
even the physical data model) is inappropriate. Client-server and
distributed computer architectures are also particularly prone to
usability problems stemming from their ‘‘invisible” components.

Designers of distributed applications with Web interfaces are
often faced with these concerns: They must carefully weigh what
part of the application logic will reside on the client side and what

0164-1212/$ - see front matter � 2008 Published by Elsevier Inc.
doi:10.1016/j.jss.2008.04.037

* Corresponding author. Tel.: +1 514 848 2424x3024; fax: +1 514 848 4568.
E-mail address: seffah@encs.concordia.ca (A. Seffah).
URL: http://hci.cs.concordia.ca/www.

The Journal of Systems and Software 81 (2008) 1845–1852

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

mailto:seffah@encs.concordia.ca
http://hci.cs.concordia.ca/www
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


part will be on the server side in order to achieve an appropriate
level of usability. User feedback information, such as application
status and error messages, must be carefully designed and ex-
changed on the client and server part of the application, anticipat-
ing response time of each component, error conditions and
exception handling, and the variability of the computing environ-
ment. Sometimes, the Web user interface becomes crippled by
the constraints imposed by these invisible components because
the appropriate style of interactions is too difficult to implement.

Like other authors (Bass et al., 2001; Folmer and Bosch, 2003),
we argue that both software developers implementing the systems
features and usability engineers in charge of designing the user
interfaces should be aware of the importance of this intimate rela-
tionship between features and the user interfaces. This relationship
can inform architecture design for usability. With the help of pat-
terns, this relationship can help integrate usability concerns in
software engineering. Beyond proposing a list of patterns to solve
specific problems, our long-term goal is to define a framework
for studying and integrating usability concerns in interactive soft-
ware architecture via patterns.

The second section discusses the related word dealing with the
architectures for interactive software. In Sections 3 and 4, we focus
on specific ways in which internal software properties can have an
impact on usability criteria. In Section 5, we attempt to provide a
more general, theoretical framework for the relationships between
usability and invisible software attributes. Finally, we conclude
with the future investigations.

2. Related work

A large number of architectures for interactive software have
been proposed, e.g., Seeheim model, model-view-controller
(MVC), arch/slinky, presentation abstraction control (PAC), PAC-
amadeus and model-view-presenter (MVP) (Bass et al., 1998).
Most of these architectures distinguish three main components:
(1) abstraction or model, (2) control or dialog and (3) presentation.
The model contains the functionality of the software. The view pro-
vides graphical user interface (GUI) components for a model. It gets
the values that it displays by querying the model of which it is a
view. A model can have several views. When a user manipulates
a view of a model, the view informs a controller of the desired
change. Fig. 1 summarizes the role of each these three components
for an MVC-based application.

The motivation behind these architecture models is to improve,
among others, the adaptability, portability, complexity handling
and separation of concerns of interactive software. However, even
if the principle of separating interactive software in components

has its design merits, it can be the source of serious adaptability
and usability problems in software that provides fast, frequent
and intensive semantic feedback. The communication between
the view and the model makes the software system highly coupled
and complex.

The major weakness of this architecture is the lack provisions
for integrating usability in the design of the model or abstraction
components.

Len Bass and his colleagues (Bass et al., 2001) identified specific
connections between aspects of usability (such as the ability to
‘‘undo”) and the model response (processed by an event handler
routine). Their attention was limited to single-user desktop sys-
tems only and the scenarios need to be validated in practice.

Folmer and Bosch (Folmer and Bosch, 2003) discussed a usabil-
ity framework which consists of three levels: problem domain,
solution domain and the usability properties level. This framework
expresses the relationship between design methods that allow for
design for usability at the architectural level and the evaluation
tools that allow assessment of architectures for the support of
usability. This research needs case studies to determine its validity
and consider other application domains rather than e-commerce
software.

To study these intimate relationships between the model and
the interface, we proposed the following methodological frame-
work to:

1. Identify and categorize typical design scenarios that illustrate
how invisible components and their intrinsic quality properties
might affect the usability,

2. Model each scenario in terms of a cause/effect relationship
between (a) the attributes that quantify the quality of an invis-
ible software entity and (b) well-known usability factors such
as efficiency, satisfaction, etc.,

3. Suggest new design patterns or improve existing ones that can
solve the problem described in similar scenarios,

4. Illustrate, as part of the pattern documentation, how these pat-
terns can be applied within existing architectural models such
as MVC.

3. Identifying and categorizing typical scenarios

The first step in our approach for achieving usability via soft-
ware architecture and patterns is to identify typical situations that
illustrate how invisible components of the model might affect
usability. Each typical situation is documented using a scenario.
Scenarios are widely used in HCI and software engineering (Carroll,
2000). Scenarios can improve communication between user inter-
face specialists and software engineers who design invisible com-
ponents – this communication is essential in our approach.
Within our approach, we define a scenario as a narrative story
written in natural language that describes a usability problem (ef-
fect) and that relates the source of this problem to an invisible soft-
ware entity (cause). The scenario establishes the relationship
between internal software attributes that are used to measure
the quality of the invisible software entity and the external usabil-
ity factors that we use for assessing the ease of use of the software
systems.

The following are some typical scenarios we extracted from our
day-to-day experiences and from a literature review. Other
researchers also proposed other scenarios (see Kazman and Leon-
ard, 2002). The goal of our research was not to build an exhaustive
list of scenarios, but rather to propose a methodological framework
for identifying such scenarios and to define patterns that be used
by developers to solve such problems. The scenarios are therefore
intended as illustrative examples.

Model
- Encapsulates application 
state
- Responds to state queries
- Exposes application 
functionality
- Notifies views of changes

Views
- Renders the models
- Requests updates 
from models
- Sends user events to 
controllers
- Allows a controller to 
select views

Controller
-Defines application 
behavior
-Maps user actions to 
model updates
-Selects vie for 
response 
-One for each 
functionality

View Selection

User Events

Change 
Notification

State 
Change

State Query

Method Invocations
Events

Fig. 1. The roles of the MVC architecture components.

1846 A. Seffah et al. / The Journal of Systems and Software 81 (2008) 1845–1852



Download English Version:

https://daneshyari.com/en/article/461635

Download Persian Version:

https://daneshyari.com/article/461635

Daneshyari.com

https://daneshyari.com/en/article/461635
https://daneshyari.com/article/461635
https://daneshyari.com

