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a b s t r a c t

Given a flow on a surface, we consider the problem of connecting two distinct trajectories
by a curve of extremal (absolute) instantaneous flux. We develop a complete classification
of flux optimal curves, accounting for the possibility of the flux having spatially and
temporally varying weight. This weight enables modelling the flux of non-equilibrium
distributions of tracer particles, pollution concentrations, or active scalar fields such as
vorticity. Our results are applicable to all smooth autonomous flows, area preserving or not.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Given a two-dimensional manifoldΩ , possibly with nonempty boundary, and a C2 function f : Ω → R2 we consider the
dynamical system

ẋ = f (x) (1)

in which x ∈ Ω . We will search for flux extremising curves that join a specified pair of points a and b. The ‘‘flux’’ here will
be a general quantity; our definitions will provide for the quantification of each of a variety of entities crossing the curve per
unit time, including the quantity of fluid, heat or chemical, or the amount of vorticity or potential vorticity. Clearly if a and
b lie on a single trajectory of the flow, one may travel along this trajectory from a to b and incur zero flux; this trajectory
segmentwould be the fluxminimising curve. To pose nontrivial questions about flux extremising curves, we need to restrict
our attention to pairs of points than cannot be joined by trajectories. This leads us to the notion of an integral set. Let φ(x, t)
be the flowwhich is generated by (1); that is, φ(x, t) is the location inΩ to which an initial condition x progresses by time t .

Definition 1 (Closed Trajectory). For any x ∈ Ω , define its closed trajectory Tx by

Tx := {φ(x, t) : t ∈ R}. (2)

Definition 2 (Integral Set). Define the sets I ix for i ∈ N inductively by

I1x = Tx,

I ix =

y ∈ Ω : Ty ∩ I i−1

x ≠ ∅


(i = 2, 3, 4, . . .),
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and then the integral set Ix of x by

Ix =


i∈N

I ix. (3)

Thus, Ix includes all trajectories that can be connected to x by going through a countable number of ‘‘end states’’, such as
fixed points or periodic orbits; connecting through an end state at infinity is not allowed. The set Ix may be either one- or
two-dimensional, depending on the topology ofΩ and the dynamics of (1). We will be concerned with pairs of points a and
b with the property that any curve joining a to b must have nonzero absolute flux across it. Thus the integral sets through
a and b should neither intersect, nor be connectable via a curve of fixed points:

Hypothesis 1.
(i) The integral sets Ia and Ib do not intersect, that is Ia ∩ Ib = ∅, and
(ii) There does not exist a curve C̃ ⊆ Ω such that f (x) = 0 for all x ∈ C̃, and for which Ia ∩ C̃ and Ib ∩ C̃ are both nonempty.

We will define flux in relation to a non-negative time-varying weight function g . The basic example to keep in mind is
that g(x, t) is a chemical concentration; the flux definitions will then compute the flux of the chemical (in chemical mass
per unit time, say), at each instance in time. Note that we allow g to vary with time; this enables the flux computations even
when the chemical concentration is not in equilibrium. As will be argued later, our definition for g will allow the modelling
of more general situations, such as the flux of vorticity or temperature. Our weight function is in general defined by:

Definition 3 (Weight Function). The weight function g : Ω × R → [0,∞) is such that g(·, t) ∈ C1 (Ω) for any t ∈ R.

At a fixed time t , the idea is to determine curves which extremise the flux; these curves are restricted to C1 curves in
Ω taking the form C = {r(p) : 0 ≤ p ≤ 1}. The following definitions for the flux are at a specific time instance t , and are
therefore instantaneous in nature.

Definition 4 (Weighted Local (Point) Flux). The weighted local flux (or weighted point flux) at differentiable points r(p) on a
piecewise C1 curve C = {r(p) : 0 ≤ p ≤ 1} ⊂ Ω at a time instance t is given by

Lg (r(p), t) := g(r(p), t) f (r(p)) · Jr′(p), (4)

where J :=


0 −1
1 0


.

Since Jr′(p) represents the leftwards-pointing normal directionwhen traversing the curve in the direction of increasing p,
the local fluxmeasures the strength of gf in the leftwards normal direction to the curve, weighted according to g . Integrating
the local flux over a curve C gives the ‘‘weighted flux’’ across C, in the following senses:

Definition 5 (Weighted Signed Flux). The weighted signed flux F s
g(C, t) across C at a time instance t is defined by

F s
g (C, t) :=

 1

0
f (r(p)) · J

r′(p)
|r′(p)|

r′(p) g(r(p), t) dp =

 1

0
Lg (r(p), t) dp. (5)

Definition 6 (Weighted Absolute Flux). The weighted absolute flux F a
g (C, t) across C at a time instance t is defined by

F a
g (C, t) :=

 1

0

f (r(p)) · J
r′(p)
|r′(p)|

 r′(p) g(r(p), t) dp =

 1

0

Lg (r(p), t) dp. (6)

The ‘‘standard flux’’ (quantity of fluid crossing per unit time) is obtained by setting g ≡ 1, while more general g can be
used to represent the flux associated with a passively transported chemical concentration or of a (passive or active) scalar
field. To state our main result, we also need the following definitions.

Definition 7 (Weighted Compressibility). The weighted compressibility function κg : Ω × R → R is defined by

κg(x, t) := ∇ · (f(x)g(x, t)), (7)

where ∇ denotes the derivative with respect to x.

If g ≡ 1, the weighted compressibility becomes the divergence of the vector field (the compressibility of the flow). That is,
κ1 = ∇ · f.

Definition 8 (Flow Derivative). The flow derivative of a scalar field h(x, t) onΩ × R which is C1 inΩ for each t ∈ R is given
by

Dfh (x, t) := f (x) · ∇h(x, t). (8)
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