
Software development cost estimation using wavelet neural networks

K. Vinay Kumar, V. Ravi *, Mahil Carr, N. Raj Kiran

Institute for Development and Research in Banking Technology, Castle Hills Road #1, Masab Tank, Hyderabad 500 057, AP, India

Received 30 May 2007; received in revised form 28 December 2007; accepted 28 December 2007
Available online 8 January 2008

Abstract

Software development has become an essential investment for many organizations. Software engineering practitioners have become
more and more concerned about accurately predicting the cost and quality of software product under development. Accurate estimates
are desired but no model has proved to be successful at effectively and consistently predicting software development cost. In this paper,
we propose the use of wavelet neural network (WNN) to forecast the software development effort. We used two types of WNN with
Morlet function and Gaussian function as transfer function and also proposed threshold acceptance training algorithm for wavelet neu-
ral network (TAWNN). The effectiveness of the WNN variants is compared with other techniques such as multilayer perceptron (MLP),
radial basis function network (RBFN), multiple linear regression (MLR), dynamic evolving neuro-fuzzy inference system (DENFIS) and
support vector machine (SVM) in terms of the error measure which is mean magnitude relative error (MMRE) obtained on Canadian
financial (CF) dataset and IBM data processing services (IBMDPS) dataset. Based on the experiments conducted, it is observed that the
WNN-Morlet for CF dataset and WNN-Gaussian for IBMDPS outperformed all the other techniques. Also, TAWNN outperformed all
other techniques except WNN.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Software development effort; Software cost estimation; Wavelet neural networks; Threshold accepting based wavelet neural network

1. Introduction

Software development has become an important activity
for many modern organizations. In fact the quality, cost,
and timeliness of developed software are often crucial
determinants of an organization’s success. There are signif-
icant financial and strategic implications for development
projects in terms of activity scheduling and cost estimation.
Software cost estimation is one of the most critical tasks in
managing software projects. Development costs tend to
increase with project complexity and hence accurate cost
estimates are highly desired during the early stages devel-
opment (Xu and Khoshgoftaar, 2004). A major problem
of the software cost estimation is first obtaining an accurate

size estimate of the software to be developed (Kitchenham
et al., 2003). An important objective of the software engi-
neering community has been to develop useful models that
constructively explain the software development life cycle
and accurately estimate the cost of software development.

In order to effectively develop software in an increas-
ingly competitive and complex environment many firms
use software metrics as part of their project management
process. The field concerned with managing software devel-
opment projects using empirical models is referred to as
software metrics (Fenton and Pleeger, 1997). Software
metrics are aspects of software development (either the
software product itself, or the development process pro-
ducing it) that can be measured. These metrics can be used
as variables in models to predict some aspect(s) of the
development process or product.

Estimating development effort and schedule, can include
activities such as assessing and predicting system quality,
measuring system performance, estimating user satisfac-
tion and in fact any modeling task involving measurable

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.12.793

* Corresponding author. Tel.: +91 40 2353 4981x2042; fax: +91 40 2353
5157.

E-mail addresses: vinaykadiyam@gmail.com (K. Vinay Kumar),
rav_padma@yahoo.com (V. Ravi), mahil.carr@gmail.com (M. Carr),
nrajkiran@gmail.com (N. Raj Kiran).

www.elsevier.com/locate/jss

Available online at www.sciencedirect.com

The Journal of Systems and Software 81 (2008) 1853–1867

mailto:vinaykadiyam@gmail.com
mailto:rav_padma@yahoo.com
mailto:mahil.carr@gmail.com
mailto:nrajkiran@gmail.com


attributes of interest within the software development
sphere (Gray, 1999). However, the most researched area
has been effort estimation as it carries the greatest promise
of benefit for project management. Software effort esti-
mates are crucial for estimating the amount of manpower
needed for the project. This estimate determines staff allo-
cation and schedule for a software project. Since human
effort is the major cost driver in a software project, the
effort estimate determines the budget of the project. Accu-
rate effort estimates help software consultancies to make
appropriate bids when quoting for tenders – a lower esti-
mate than the actual will lead to a loss and an unreason-
ably high estimate will loose the bid. Such estimation
models are developed using a set of measures that describe
the software development process, product and resources
such as developer experience, system size and complexity
and the characteristics of the development environment,
respectively. The output of the model is some measure of
effort in terms of person hours (months or years).

There are many models and tools used in software cost
estimation that provide invaluable information regarding
efforts and expenditure to the management to bid for a pro-
ject (Kitchenham et al., 2003). The most commonly used
methods for predicting software development effort have
been based on linear-least-squares regression such as
COCOMO (Boehm, 1981; Fenton and Pleeger, 1997; Press-
man, 1997). As such, COCOMO is extremely susceptible to
local variations in data points (Miyazaki et al., 1994).
Additionally, the models have failed to deal with implicit
nonlinearities and interactions between the characteristics
of the project and effort (Gray, 1999). Software cost esti-
mation models are deemed to be acceptably accurate if they
yield estimates with 25% mean relative error to the actual
and this must be true at least 75% of the time. There is
always scope for developing effort estimation models with
better predictive accuracy (Kemerer, 1987).

In recent years, a number of alternative modeling tech-
niques have been proposed. Existing datasets have their
performance examined with some success including those
in Gray and MacDonell (1997). Alternative models include
artificial neural networks (Verkatachalm, 1993), analogy-
based reasoning, regression trees and rule induction
models. Gray and MacDonell (1997) applied fuzzy logic
to software metric models for development effort estima-
tion. They outlined the use of fuzzy logic for defining soft-
ware metrics as linguistic variables and for modeling
process. They made comparison of results obtained from
an elementary fuzzy inference system with other techniques
such as linear regression and neural network techniques
and found that it outperformed. Gray (1999) presented sev-
eral different predictive model-building techniques such as
robust statistical procedures, various forms of neural net-
work models, fuzzy logic, case-based reasoning and regres-
sion trees. He also described a simulation-based study on
the performance of these empirical modeling techniques
using size and effort software metric dataset and observed
that M-estimation regression outperformed all other para-

metric and non-parametric techniques. Xu and Khoshgof-
taar (2004) presented an innovative fuzzy identification
software cost estimation modeling technique, which is an
advanced fuzzy logic technique that integrates fuzzy clus-
tering, space projection, fuzzy inference and defuzzifica-
tion. Based upon their case study on the COCOMO’81
database it was observed that the fuzzy identification
model provided significantly better cost estimations than
the three COCOMO models, i.e. basic, intermediate and
detailed. Many researchers have applied the neural net-
works approach to estimate software development effort
(Hughes, 1996; Jorgerson, 1995; Samson et al., 1997; Scho-
field, 1998; Seluca, 1995; Heiat, 2002; Srinivasan and
Fisher, 1995; Wittig and Finnie, 1997). Most of their inves-
tigations have focused more attention on the accuracy of
the other cost estimation techniques such as COCOMO
and Function Point Analysis. Idri et al. (2002) have also
done research on estimating software cost using the neural
networks approach and fuzzy if–then rules on the
COCOMO’81 dataset. The use of software effort estima-
tions by means of analogy have been evaluated and con-
firmed in several studies (Angelis and Stamelo, 2000;
Jorgenson et al., 2003; Shepperd and Schofield, 1997). Wol-
verton (1974) explained the use of estimation by analogy
and described the similarities and differences of existing
software cost estimating techniques. Mukhopadhyay
et al. (1992) utilized analogy for software effort estimation
by retrieving the most similar cases. Their results showed
that the analogy approach is more accurate and consistent
than the function point and COOCMO models. Chiu and
Huang (2007) used adjusted analogy-based software effort
estimation based on similarity distances between pairs of
projects. They demonstrated that applying effort adjust-
ment to the analogy-based software effort estimations is a
feasible approach to improve estimating using the three
distance metrics. In addition, they demonstrated that the
proposed adjusted analogy-based estimations are also com-
patible to the widely used estimation models of ANN,
CART and OLS.

The rest of the paper is organized as follows: In Section
2, the techniques applied to software cost estimation are
described briefly. Section 3 introduces wavelet neural net-
works. Section 4 describes the datasets and data prepara-
tion for our empirical study, while Section 5 presents our
experimental methodology and compares the estimation
performances with the most often used software effort esti-
mation methods in the literature. Finally, Section 6 sum-
marizes our work and outlines further directions.

2. Brief overview of the techniques employed

2.1. Multilayer perceptron (MLP)

Multilayer perceptrons (MLPs) are feed-forward neural
networks trained with the standard back propagation algo-
rithm. They are supervised networks so they require a
desired response to be trained. They learn how to trans-

1854 K. Vinay Kumar et al. / The Journal of Systems and Software 81 (2008) 1853–1867



Download English Version:

https://daneshyari.com/en/article/461636

Download Persian Version:

https://daneshyari.com/article/461636

Daneshyari.com

https://daneshyari.com/en/article/461636
https://daneshyari.com/article/461636
https://daneshyari.com

