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1. Introduction

Let A be a *-algebra and 7 be a non-zero scalar. For A, B € 4, define the Jordan n-*-product of A and B as A$,B =
AB + nBA*. The Jordan (—1)-x-product, which is customarily called the skew product, was extensively studied because
it naturally arises in the problem of representing quadratic functionals with sesquilinear functionals (see, for example,
[9,8,10]) and in the problem of characterizing ideals (see, for example, [3,7]). We believe that the general Jordan n-*-product,
particularly the Jordan 1-*-product and the Jordan i-*-product, is meaningful in some research topics.

A map ¢ between *-algebras 4 and B is said to preserve the Jordan n-*-product if ¢(A$,B) = ¢(A)<,¢(B) for all
A,B € . An and Hou in [1] proved that a bijective map preserving the Jordan (—1)-x-product between algebras of all
bounded linear operators on Hilbert spaces is either a linear *-isomorphism or a conjugate linear *-isomorphism. This result
was extended to factor von Neumann algebras by Cui and Li [4]. In [2], Bai and Du generalized the result of Cui and Li to more
general von Neumann algebras, proving that a bijective map preserving the Jordan (—1)-%-product between von Neumann
algebras without central abelian projections is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism.
Recently, Liet al. in [5] consider maps which preserve the Jordan 1-x-product and proved that such a map between factor von
Neumann algebras is either a linear *-isomorphism or a conjugate linear *-isomorphism. In this paper, we will completely
describe maps preserving the Jordan n-x-product between von Neumann algebras without central abelian projections for
all non-zero scalars 7.

Let us fix some notations and terminologies. Throughout, algebras and spaces are over the complex number field C.
Suppose that »4 is a von Neumann algebra on a Hilbert space H. By Z(-4) denote the center of 4, thatis, Z(A) = {A € A :
AB = BAfor all B € 4}. A projection P is called a central abelian projection if P € Z(4) and PAP is abelian. For A € 4, the
central carrier of A, denoted by A, is the smallest central projection P satisfying PA = A. It is not difficult to see that A is the
projection onto the closed subspace spanned by {BAx : B € 4, x € H}.If Q is a projection in «+, then Q, called the core of Q,
is the biggest central projection P satisfying P < Q.IfQ = 0, we call Q a core-free projection. It is easy to verify that Q = 0

ifand only if I — Q = I, where I is the identity operator.

Lemma 1.1 ([6, Lemma 4]). Let 4 be a von Neumann algebra without central abelian projections. Then there exists a projection
Pin AsuchthatP =0and P = I.
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Lemma 1.2. Let 4 be a von Neumann algebra on a Hilbert space H. Let A be an operator in 4 and P a projection with P = I.

(1) If ABP = 0 forall B € A, thenA = 0;
(2) If n is a non-zero scalar and (PT(I — P))<,A =0 forall T € A, then A(I — P) = 0.

Proof. (1) This is easily seen from the fact that {BPx : x € H} is dense in H.
(2) ByiT replacing T in PT(I — P)A+ nA(I — P)T*P = 0, we get PT(I — P)A — nA(I — P)T*P = 0 and hence A(I — P)T*P =0
forallT € A.By(1),AIl — P) = 0.

2. Additivity

The main result in this section is as follows.

Theorem 2.1. Let A be a von Neumann algebra without central abelian projections and 8B be a *-algebra. Let n be a non-zero
scalar. Suppose that ¢ is a bijective map from 4 onto 8 which satisfies ¢(A,B) = ¢(A)< Oy (B) forall A,B € A. Then ¢ is
additive.

Before the proof, we remark that the hypothesis “# containing no central abelian projections” is needed in the above
theorem. For example, for a, b € R, define ¢(a + bi) = 4(a® + b%i). Then ¢ is a bijection from C onto itself. It is not difficult
to verify that ¢ preserves the Jordan 1-x-product and the Jordan (—1)-*-product. However it is obviously not additive.

Proof. First we give a key technique. Suppose that Ay, A,, ..., A, and T are in 4 such that ¢(T) = Z?:l ¢(A;). Then for
S € A, we have

P(SOT) = GS)Oyd(T) = D G(S)Oyp(A) = Y P(SyA) (2.1)
i=1 i=1
and
P(TO,S) = H(1)Oyp(S) = D p(ANOyh(S) = Y P(Ai>,S). (2.2)
i=1 i=1

Claim 1. ¢(0) = 0.

By the surjectivity of ¢, we can find A € 4 such that ¢(A) = 0. Then ¢(0) = ¢(0<,A) = ¢(0)<O,@(A) = $(0)<,0 = 0.

In what follows, we fix a non-trivial projection P; in + and let P, = I — P;. Set A;; = P;AP;. Then A = Z?Fl Ajj. When
we write Aj;, it indicates that A; € ;.

Claim 2. Let Aj; € A, i = 1,2.Then ¢ (A1 + Azz) = ¢ (A1) + P(Ax).

By surjectivity, choose T = Zijzl T € 4 such that ¢(T) = ¢(A11) + ¢(Asz). For any A € C, since (AP1)<,An = 0,
it follows from (2.1) and Claim 1 that ¢((AP1)<>,T) = ¢((AP1)<,A11). By the injectivity of ¢, we get that (AP1)<$,T =
()\.P1)<>;7A]1, ie.,

(A +nM)Ti1 + ATz + nATor = (A + nA)Aq.
Now letting A # 0 and A + n)_\ # 0,wegetTi; =T,y =0and Ty = Aq;.

Similarly, we can get Ty, = Ay, proving the claim.

Claim 3. LetA12 € A1 and A21 € A1. Then ¢(A12 +A21) = ¢(A12) + ¢(A21) _

Choose T = Zﬁj:1 T G_A such that ¢(T) = qﬁ({\]z) + ¢(Azq). Forany A € C, since (nAP; — AP;)<,A 1 = 0, it follows
from (2.1) that ¢ (nAP1 — AP,)<,T) = ¢ ((nAP1 — AP,)<>,A;1). Hence by the injectivity of ¢, we have

A+ MPMOTi — (A4 0T — O — NPT = —(A — [7*A)Axn
for all A € C. From this, we get that T;; = Tp; = 0.

Now since A;,<$,P1 = 0, it follows from (2.2) that ¢(T<,P1) = ¢(A21<0,P1). Hence To1 4+ 0Ty, = Az + nAj;, and so
T,1 = Ay;. Similarly, T1; = Aj,, proving the claim.

Claim 4. Fori,j, k € {1,2},i # j, A € A, Aj € Ajj, we have ¢ (A + Aj) = ¢(Aw) + @ (Aj).

We only prove the casei = k = 1 andj = 2; the proof of the other cases is similar. Now suppose that T in «+ is such that
d(T) = ¢(A11) + ¢(A1p). Since (AP,)<>pA11 = 0, it follows from (2.1) that ¢ ((AP2)<,T) = @ ((AP2)<>yA12) for all scalar A.
Hence Tzz = T21 = 0and T12 = A]z. _ _

Since (nAP; — AP;)<,A 1 = 0, it follows that ¢ ((nAP; — AP2)<,T) = ¢((nAP; — AP,)<>,Aq4) for all scalar A and hence
Ty = A1
Claim 5. For Aj1 € 11, Ay € A, Bip € A2, Co1 € Az, We have

¢ (A1 + Bia + Co1) = ¢(A11) + ¢(B12) + ¢(Car) (2.3)

and

@(A22 + Biz + Co1) = ¢(Az2) + ¢ (Br2) + ¢ (Car). (2.4)
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