

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Nonlinear maps preserving Jordan *-products

Liqing Dai, Fangyan Lu*

Department of Mathematics, Soochow University, Suzhou 215006, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 10 November 2012 Available online 19 July 2013 Submitted by J.D.M. Wright

Keywords: Maps preserving η -*-product von Neumann algebras Isomorphism

1. Introduction

Let η be a non-zero scalar. In this paper, we investigate a bijective map ϕ between two von Neumann algebras, one of which has no central abelian projections, satisfying $\phi(AB + \eta BA^*) = \phi(A)\phi(B) + \eta\phi(B)\phi(A)^*$ for all A, B in the domain. It is showed that ϕ is a linear *-isomorphism if η is not real and ϕ is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism if η is real.

© 2013 Elsevier Inc. All rights reserved.

CrossMark

Let A be a *-algebra and η be a non-zero scalar. For $A, B \in A$, define the Jordan η -*-product of A and B as $A \diamondsuit_{\eta} B = AB + \eta BA^*$. The Jordan (-1)-*-product, which is customarily called the skew product, was extensively studied because it naturally arises in the problem of representing quadratic functionals with sesquilinear functionals (see, for example, [9,8,10]) and in the problem of characterizing ideals (see, for example, [3,7]). We believe that the general Jordan η -*-product, particularly the Jordan 1-*-product and the Jordan *i*-*-product, is meaningful in some research topics.

A map ϕ between *-algebras \mathcal{A} and \mathcal{B} is said to preserve the Jordan η -*-product if $\phi(A \diamondsuit_{\eta} B) = \phi(A) \diamondsuit_{\eta} \phi(B)$ for all $A, B \in \mathcal{A}$. An and Hou in [1] proved that a bijective map preserving the Jordan (-1)-*-product between algebras of all bounded linear operators on Hilbert spaces is either a linear *-isomorphism or a conjugate linear *-isomorphism. This result was extended to factor von Neumann algebras by Cui and Li [4]. In [2], Bai and Du generalized the result of Cui and Li to more general von Neumann algebras, proving that a bijective map preserving the Jordan (-1)-*-product between von Neumann algebras without central abelian projections is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism. Recently, Li et al. in [5] consider maps which preserve the Jordan 1-*-product and proved that such a map between factor von Neumann algebras is either a linear *-isomorphism or a conjugate linear *-isomorphism. In this paper, we will completely describe maps preserving the Jordan η -*-product between von Neumann algebras without central abelian projections for all non-zero scalars η .

Let us fix some notations and terminologies. Throughout, algebras and spaces are over the complex number field \mathbb{C} . Suppose that \mathcal{A} is a von Neumann algebra on a Hilbert space H. By $Z(\mathcal{A})$ denote the center of \mathcal{A} , that is, $Z(\mathcal{A}) = \{A \in \mathcal{A} : AB = BA$ for all $B \in \mathcal{A}\}$. A projection P is called a central abelian projection if $P \in Z(\mathcal{A})$ and $P\mathcal{A}P$ is abelian. For $A \in \mathcal{A}$, the central carrier of A, denoted by \overline{A} , is the smallest central projection P satisfying PA = A. It is not difficult to see that \overline{A} is the projection onto the closed subspace spanned by $\{BAx : B \in \mathcal{A}, x \in H\}$. If Q is a projection in \mathcal{A} , then Q, called the core of Q, is the biggest central projection P satisfying $P \leq Q$. If Q = 0, we call Q a core-free projection. It is easy to verify that Q = 0 if and only if $\overline{I - Q} = I$, where I is the identity operator.

Lemma 1.1 ([6, Lemma 4]). Let A be a von Neumann algebra without central abelian projections. Then there exists a projection P in A such that $\underline{P} = 0$ and $\overline{P} = I$.

^{*} Corresponding author. E-mail addresses: dailiging_27@163.com (L. Dai), fylu@suda.edu.cn (F. Lu).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.07.019

Lemma 1.2. Let \mathcal{A} be a von Neumann algebra on a Hilbert space H. Let A be an operator in \mathcal{A} and P a projection with $\overline{P} = I$. (1) If ABP = 0 for all $B \in A$, then A = 0;

(2) If η is a non-zero scalar and $(PT(I - P)) \diamondsuit_n A = 0$ for all $T \in A$, then A(I - P) = 0.

Proof. (1) This is easily seen from the fact that $\{BPx : x \in H\}$ is dense in *H*.

(2) By *iT* replacing T in $PT(I-P)A + \eta A(I-P)T^*P = 0$, we get $PT(I-P)A - \eta A(I-P)T^*P = 0$ and hence $A(I-P)T^*P = 0$ for all $T \in \mathcal{A}$. By (1), A(I - P) = 0.

2. Additivity

The main result in this section is as follows.

Theorem 2.1. Let A be a von Neumann algebra without central abelian projections and B be a *-algebra. Let n be a non-zero scalar. Suppose that ϕ is a bijective map from \mathcal{A} onto \mathcal{B} which satisfies $\phi(A \diamondsuit_n B) = \phi(A) \diamondsuit_n \phi(B)$ for all $A, B \in \mathcal{A}$. Then ϕ is additive.

Before the proof, we remark that the hypothesis "A containing no central abelian projections" is needed in the above theorem. For example, for $a, b \in \mathbb{R}$, define $\phi(a + bi) = 4(a^3 + b^3i)$. Then ϕ is a bijection from \mathbb{C} onto itself. It is not difficult to verify that ϕ preserves the Jordan 1-*-product and the Jordan (-1)-*-product. However it is obviously not additive.

Proof. First we give a key technique. Suppose that A_1, A_2, \ldots, A_n and T are in \mathcal{A} such that $\phi(T) = \sum_{i=1}^{n} \phi(A_i)$. Then for $S \in \mathcal{A}$, we have

$$\phi(S\diamond_{\eta}T) = \phi(S)\diamond_{\eta}\phi(T) = \sum_{i=1}^{n} \phi(S)\diamond_{\eta}\phi(A_{i}) = \sum_{i=1}^{n} \phi(S\diamond_{\eta}A_{i})$$
(2.1)

and

$$\phi(T\diamond_{\eta}S) = \phi(T)\diamond_{\eta}\phi(S) = \sum_{i=1}^{n} \phi(A_{i})\diamond_{\eta}\phi(S) = \sum_{i=1}^{n} \phi(A_{i}\diamond_{\eta}S).$$
(2.2)

Claim 1. $\phi(0) = 0$.

By the surjectivity of ϕ , we can find $A \in A$ such that $\phi(A) = 0$. Then $\phi(0) = \phi(0 \diamond_n A) = \phi(0) \diamond_n \phi(A) = \phi(0) \diamond_n 0 = 0$.

In what follows, we fix a non-trivial projection P_1 in A and let $P_2 = I - P_1$. Set $A_{ij} = P_i A_j$. Then $A = \sum_{i,j=1}^{2} A_{ij}$. When we write A_{ij} , it indicates that $A_{ij} \in A_{ij}$.

Claim 2. Let $A_{ii} \in A_{ii}$, i = 1, 2. Then $\phi(A_{11} + A_{22}) = \phi(A_{11}) + \phi(A_{22})$.

By surjectivity, choose $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that $\phi(T) = \phi(A_{11}) + \phi(A_{22})$. For any $\lambda \in \mathbb{C}$, since $(\lambda P_1) \diamondsuit_{\eta} A_{22} = 0$, it follows from (2.1) and Claim 1 that $\phi((\lambda P_1) \diamondsuit_{\eta} T) = \phi((\lambda P_1) \diamondsuit_{\eta} A_{11})$. By the injectivity of ϕ , we get that $(\lambda P_1) \diamondsuit_{\eta} T = \phi((\lambda P_1) \diamondsuit_{\eta} A_{11})$. $(\lambda P_1) \diamondsuit_{\eta} A_{11}$, i.e.,

$$(\lambda + \eta \lambda)T_{11} + \lambda T_{12} + \eta \lambda T_{21} = (\lambda + \eta \lambda)A_{11}.$$

Now letting $\lambda \neq 0$ and $\lambda + \eta \overline{\lambda} \neq 0$, we get $T_{12} = T_{21} = 0$ and $T_{11} = A_{11}$. Similarly, we can get $T_{22} = A_{22}$, proving the claim.

Claim 3. Let $A_{12} \in A_{12}$ and $A_{21} \in A_{21}$. Then $\phi(A_{12} + A_{21}) = \phi(A_{12}) + \phi(A_{21})$.

Choose $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that $\phi(T) = \phi(A_{12}) + \phi(A_{21})$. For any $\lambda \in \mathbb{C}$, since $(\eta \lambda P_1 - \overline{\lambda} P_2) \diamondsuit_{\eta} A_{12} = 0$, it follows from (2.1) that $\phi((\eta \lambda P_1 - \overline{\lambda} P_2) \diamondsuit_{\eta} T) = \phi((\eta \lambda P_1 - \overline{\lambda} P_2) \diamondsuit_{\eta} A_{21})$. Hence by the injectivity of ϕ , we have

$$(\eta \lambda + |\eta|^2 \bar{\lambda}) T_{11} - (\bar{\lambda} + \eta \lambda) T_{22} - (\bar{\lambda} - |\eta|^2 \bar{\lambda}) T_{21} = -(\bar{\lambda} - |\eta|^2 \bar{\lambda}) A_{21}$$

for all $\lambda \in \mathbb{C}$. From this, we get that $T_{11} = T_{22} = 0$.

Now since $A_{12} \diamond_{\eta} P_1 = 0$, it follows from (2.2) that $\phi(T \diamond_{\eta} P_1) = \phi(A_{21} \diamond_{\eta} P_1)$. Hence $T_{21} + \eta T_{21}^* = A_{21} + \eta A_{21}^*$, and so $T_{21} = A_{21}$. Similarly, $T_{12} = A_{12}$, proving the claim.

Claim 4. For $i, j, k \in \{1, 2\}, i \neq j, A_{kk} \in A_{kk}, A_{ij} \in A_{ij}$, we have $\phi(A_{kk} + A_{ij}) = \phi(A_{kk}) + \phi(A_{ij})$. We only prove the case i = k = 1 and j = 2; the proof of the other cases is similar. Now suppose that T in A is such that $\phi(T) = \phi(A_{11}) + \phi(A_{12})$. Since $(\lambda P_2) \diamond_{\eta} A_{11} = 0$, it follows from (2.1) that $\phi((\lambda P_2) \diamond_{\eta} T) = \phi((\lambda P_2) \diamond_{\eta} A_{12})$ for all scalar λ . Hence $T_{22} = T_{21} = 0$ and $T_{12} = A_{12}$.

Since $(\eta \lambda P_1 - \overline{\lambda} P_2) \diamondsuit_{\eta} A_{12} = 0$, it follows that $\phi((\eta \lambda P_1 - \overline{\lambda} P_2) \diamondsuit_{\eta} T) = \phi((\eta \lambda P_1 - \overline{\lambda} P_2) \diamondsuit_{\eta} A_{11})$ for all scalar λ and hence $T_{11} = A_{11}$.

Claim 5. For $A_{11} \in A_{11}, A_{22} \in A_{22}, B_{12} \in A_{12}, C_{21} \in A_{21}$, we have

$$\phi(A_{11} + B_{12} + C_{21}) = \phi(A_{11}) + \phi(B_{12}) + \phi(C_{21})$$
(2.3)

and

9

$$\phi(A_{22} + B_{12} + C_{21}) = \phi(A_{22}) + \phi(B_{12}) + \phi(C_{21}).$$
(2.4)

Download English Version:

https://daneshyari.com/en/article/4616364

Download Persian Version:

https://daneshyari.com/article/4616364

Daneshyari.com