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a b s t r a c t

We compute explicit upper bounds on the distance between the law of a multivariate
Gaussian distribution and the joint law of wavelet/needlet coefficients based on a homoge-
neous spherical Poisson field. In particular,wedevelop some results fromPeccati and Zheng
(2010) [42], based on Malliavin calculus and Stein’s methods, to assess the rate of conver-
gence to Gaussianity for a triangular array of needlet coefficientswith growing dimensions.
Our results are motivated by astrophysical and cosmological applications, in particular re-
lated to the search for point sources in Cosmic Rays data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to establishmultidimensional normal approximation results for vectors of random variables hav-
ing the form of wavelet coefficients integrated with respect to a Poisson measure on the unit sphere. The specificity of our
analysis is that we require the dimension of such vectors to grow to infinity. Our techniques are based on recently obtained
bounds for the normal approximation of functionals of general Poisson measures (see [40,42]), as well as on the use of the
localization properties of wavelet systems on the sphere (see [36], as well as the recent monograph [30]). A large part of the
paper is devoted to the explicit determination of the above quoted bounds in terms of dimension.

1.1. Motivation and overview

A classical problem in asymptotic statistics is the assessment of the speed of convergence to Gaussianity (that is, the com-
putation of explicit Berry–Esseen bounds) for parametric and nonparametric estimation procedures—for recent references
connected to the main topic of the present paper, see for instance [16,29,54]. In this area, an important novel development
is given by the derivation of effective Berry–Esseen bounds by means of the combination of two probabilistic techniques,
namely the Malliavin calculus of variations and the Stein’s method for probabilistic approximations. The monograph [6] is
the standard modern reference for Stein’s method, whereas [38] provides an exhaustive discussion of the use of Malliavin
calculus for proving normal approximation results on a Gaussian space. The fact that one can use Malliavin calculus to de-
duce normal approximation bounds (in total variation) for functionals of Gaussian fields was first exploited in [37]—where
one can find several quantitative versions of the ‘‘fourth moment theorem’’ for chaotic random variables proved in [39].
Lower bounds can also be computed, entailing that the rates of convergence provided by these techniques are sharp in
many instances—see again [38].
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In a recent series of contributions, the interaction between Stein’s method and Malliavin calculus has been further
exploited for dealing with the normal approximation of functionals of a general Poisson randommeasure. The most general
abstract results appear in [40] (for one-dimensional normal approximations) and [42] (for normal approximations in
arbitrary dimensions). These findings have recently found a wide range of applications in the field of stochastic geometry—
see [25,26,34,28,47] for a sample of geometric applications, as well as the webpage

http://www.iecn.u-nancy.fr/~nourdin/steinmalliavin.htm
for a constantly updated resource on the subject.

The purpose of this paper is to apply and extend the main findings of [40,42] in order to study the multidimensional
normal approximation of the elements of the first Wiener chaos of a given Poisson measure. Our main goal is to deduce
bounds that arewell-adapted to dealwith applicationswhere the dimension of a given statistic increaseswith the number of
observations. This is a framework which arises naturally in many relevant fields of modern statistical analysis; in particular,
our principal motivation originates from the implementation ofwavelet systems on the sphere. In these circumstances, when
more andmoredata becomeavailable, a higher number ofwavelet coefficients is evaluated, as it is customarily the casewhen
considering, for instance, thresholding nonparametric estimators. We shall hence be concerned with sequences of Poisson
fields, whose intensity grows monotonically. We then exploit the wavelet localization properties to establish bounds that
grow linearly with the number of functionals considered; we are then able to provide explicit recipes, for instance, for the
number of joint testing procedures that can be simultaneously entertained ensuring that the Gaussian approximation may
still be shown to hold, in a suitable sense.

1.2. Main contributions

Consider a sequence of i.i.d. random variables {Xi : i ≥ 1} with values in the unit sphere S2, and define {ψjk} to be the
collection of the spherical needlets associated with a certain constant B > 1, see Section 3.1 for more details and discussion.
Write also σ 2

jk = E[ψjk(X1)
2
] and bjk = E[ψjk(X1)], and consider an independent (possibly inhomogeneous) Poisson process

{Nt : t ≥ 0} on the real line such that E[Nt ] = R(t) → ∞, as t → ∞. Formally, our principal aim is to establish conditions
on the sequences {j(n) : n ≥ 1}, {R(n) : n ≥ 1} and {d(n) : n ≥ 1} ensuring that the distribution of the centered d(n)-
dimensional vector

Yn = (Yn,1, . . . , Yn,d(n))

=
1

√
R(n)


N(n)
i=1

ψj(n)k1(Xi)

σj(n)k1
−

R(n)bj(n)k1
σj(n)k1

, . . . ,

N(n)
i=1

ψj(n)kd(n)(Xi)

σj(n)kd(n)
−

R(n)bj(n)kd(n)
σj(n)kd(n)


(1.1)

is asymptotically close, in the sense of some smooth distance denoted d2 (seeDefinition 2.6), to the lawof a d(n)-dimensional
Gaussian vector, say Zn, with centered and independent components having unit variance. The use of a smooth distance
allows one to deduce minimal conditions for this kind of asymptotic Gaussianity. The crucial point is that we allow the
dimension d(n) to grow to infinity, so that our results require to explicitly assess the dependence of each bound on the
dimension. We shall perform our tasks through the following main steps: (i) Proposition 4.1 deals with one-dimensional
normal approximations, (ii) Proposition 5.4 deals with normal approximations in a fixed dimension, and finally (iii) in
Theorem 5.5 we deduce a bound that is well-adapted to the case d(n) → ∞. More precisely, Theorem 5.5 contains an
upper bound linear in d(n), that is, an estimate of the type

d2(Yn, Zn) ≤ C(n)× d(n). (1.2)
It will be shown in Corollary 5.6, that the sequence C(n) can be chosen to be

O

1/

R(n)B−2j(n)


;

as discussed below in Remark 4.3, R(n)×B−2j(n) can be viewed as ameasure of the ‘‘effective sample size’’ for the components
of Yn.

1.3. About de-Poissonization

Our results can be used in order to deduce the asymptotic normality of de-Poissonized linear statistics with growing
dimension. To illustrate this point, assume that the random variables Xi are uniformly distributed on the sphere. Then, it is
well known that bjk = 0, whenever j > 1. In this framework, when j(n) > 1 for every n, R(n) = n and d(n)/n1/4

→ 0,
the conditions implying that Yn is asymptotically close to Gaussian, automatically ensure that the law of the de-Poissonized
vector

Y ′

n = (Y ′

n,1, . . . , Y
′

n,d(n)) =
1

√
n


n

k=1

ψj(n)k1(Xi)

σj(n)k1
, . . . ,

n
k=1

ψj(n)kd(n)(Xi)

σj(n)kd(n)


(1.3)

is also asymptotically close to Gaussian. The reason for this phenomenon is nested in the statement of the forthcoming
(elementary) Lemma 1.1 (see also [9] for similar computations).
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