
The effectiveness of software metrics in identifying error-prone
classes in post-release software evolution process

Raed Shatnawi a,*, Wei Li b

a Computer Information Systems, Jordan University of Science & Technology, Irbid 22110, Jordan
b Computer Science Department, The University of Alabama in Huntsville, Huntsville, AL 35899, United States

Received 18 September 2007; received in revised form 23 December 2007; accepted 27 December 2007
Available online 8 January 2008

Abstract

Many empirical studies have found that software metrics can predict class error proneness and the prediction can be used to accu-
rately group error-prone classes. Recent empirical studies have used open source systems. These studies, however, focused on the rela-
tionship between software metrics and class error proneness during the development phase of software projects. Whether software
metrics can still predict class error proneness in a system’s post-release evolution is still a question to be answered. This study examined
three releases of the Eclipse project and found that although some metrics can still predict class error proneness in three error-severity
categories, the accuracy of the prediction decreased from release to release. Furthermore, we found that the prediction cannot be used to
build a metrics model to identify error-prone classes with acceptable accuracy. These findings suggest that as a system evolves, the use of
some commonly used metrics to identify which classes are more prone to errors becomes increasingly difficult and we should seek alter-
native methods (to the metric-prediction models) to locate error-prone classes if we want high accuracy.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Object-oriented metrics; Class error proneness; Error-severity categories; Design evolution; Open source software; Empirical study

1. Introduction

A common problem in large and complex software sys-
tems is that they have errors (Myers et al., 2004). Prevent-
ing errors from being introduced into software systems
proves to be a difficult, if not an impossible, task. If we can-
not completely prevent errors, the next best thing that we
can try is to find errors and remove them. Software testing,
in conjunction with code inspection and walkthrough, is a
widely used method to find errors; the debugging process
that follows testing removes errors from a program (Myers
et al., 2004). However, software testing is very costly in
terms of time and resources. Any information that can help
software testers focus their effort on the part of a system
that is likely to have errors can increase the efficiency of

testing. Measuring software quantitatively and using the
measures to predict where errors are likely to occur in a
system is one technique that can make the work of software
testers more effective and efficient.

Software metrics have been proposed and empirically
studied in the object-oriented (OO) paradigms. These
empirical studies have studied the relationship between
OO metrics and error proneness (Basili et al., 1996; Briand
et al., 1998, 2000; Gyimothy et al., 2005; Subramanyam
and Krishnan, 2003), maintenance effort (Li and Henry,
1993; Alshayeb and Li, 2003), design effort (Chidamber
and Kemerer, 1994) and project progress (Li et al., 2000;
Alshayeb and Li, 2005) during the development phase of
the systems.

Basili et al. (1996) validated the CK metrics as predictors
of class error proneness in a medium-sized management
information system specification (Basili et al., 1996). The
study showed that the CBO, RFC, WMC, DIT, and NOC
metrics were significant predictors of class error proneness.

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.12.794

* Corresponding author.
E-mail addresses: raedamin@just.edu.jo (R. Shatnawi), wli@cs.uah.

edu (W. Li).

www.elsevier.com/locate/jss

Available online at www.sciencedirect.com

The Journal of Systems and Software 81 (2008) 1868–1882

mailto:raedamin@just.edu.jo
mailto:wli@cs.uah.edu
mailto:wli@cs.uah.edu


Chidamber et al. (1998) investigated the relationship
between the CK metrics and various quality factors: soft-
ware productivity, rework effort, and design effort. The
study also showed that the WMC, RFC, CBO metrics were
highly correlated. Therefore, Chidamber et al. did not
include these three variables in the regression analysis to
avoid generating coefficient estimates that would be diffi-
cult to interpret. The study concluded that there were asso-
ciations between the high CBO metric value and lower
productivity, more rework, and greater design effort. In
another study, (Wilkie and Kitchenham, 2000) validated
the relationship between the CBO metric and change ripple
effect in a commercial multimedia conferencing system
(Wilkie and Kitchenham, 2000). The study showed that
the CBO metric identified the most change-prone classes,
but not the classes that were most exposed to change ripple
effect.

Cartwright and Shepperd (2000) also investigated the
relationship between a subset of CK metrics in a real-time
system. The study showed that the parts of the system that
used inheritance were three times more error prone than
the parts that did not use inheritance (Cartwright and
Shepperd, 2000). Subramanyam and Krishnan (2003) vali-
dated the WMC, CBO, and DIT metrics as predictors of
the error counts in a class in a business-to-consumer com-
merce system. Their results indicated that the CK metrics
could predict error counts.

Alshayeb and Li (2003) conducted a study on the rela-
tionship between some OO metrics and the changes in
the source code in two client–server systems and three Java
Development Kit (JDK) releases. Three of the CK metrics
(WMC, DIT, and LCOM) and three of the Li metrics
(NLM, CTA, and CTM) were validated. Alshayeb and
Li found that the OO metrics were effective to predict
design effort and source lines of code added, changed,
and deleted in short-cycled agile process (client–server sys-
tems); however, the metrics were ineffective predictors of
those variables in long-cycled framework evolution process
(JDK).

These studies shows that the use of metrics to predict
design quality during development still equivocal. On the
other hand, as systems evolve, significant amounts of
resources must be dedicated to maintain the quality of
the systems. It is not clear whether software metrics can
still predict class error proneness with reasonable accuracy
in the post-release system, because a post-release system
has been through rigorous quality-assurance procedures
(which include code inspections, walkthroughs, and test-
ing) and they should have fewer errors than they had
before the release. Research conducted by Alshayeb and
Li in 2003 raised doubts that the metrics’ predictive capa-
bilities would carry from the development phase through
the post-release evolution phase (Alshayeb and Li, 2003).
Their research results, obtained from analyzing several
releases of an open source system, indicated that software
metrics could not predict source code changes in the
post-release evolution of the system. Another issue that

has not been addressed sufficiently by the previous research
is whether software metrics can predict class error prone-
ness if we split the errors into several severity categories.

Differentiating errors into different severity categories
can help software engineers narrow down the areas in the
design to focus their efforts of testing or refactoring. For
example, if software testers have only a very limited
amount of time left to conduct testing, knowing where
the most severe errors are likely to occur in a system is cer-
tainly more helpful than just knowing where errors are
likely to occur, because the knowledge can help them nar-
row down the testing areas further. Some previous studies
used different error groups. For example, Basili et al. (1996)
divided classes from several student projects into two
groups: the group of classes that had errors and the group
of classes that did not. Szabo and Khoshgoftaar (1995)
classified functions/procedures from a system into three
groups: High-, Medium-, and Low-risk groups. However,
these studies grouped modules (classes or functions/proce-
dures) based on the number of errors, not the severity of
errors. Recently, Zhou and Leung (2006) used the Chidam-
ber and Kemerer (C&K) metrics suite (Chidamber and
Kemerer, 1994) to predict two levels of error severity in a
storage management system. They used the error data
(code named KC1) that were collected, managed, and
posted by the Metrics Data Program repository at the
National Aeronautics and Space Agency (NASA). The
KC1 data were collected throughout the lifecycle of the
project, but mainly from the development phase of the
project.

Software systems continue to evolve after they are
released. The post-release evolution process of a system is
different from the development process because the system
has been through (presumably) some rigorous quality
assurance checks (e.g., inspections/walkthroughs and test-
ing). Although the post-release systems tend to have fewer
errors than the systems that are under development, they
are still not free of errors. Software maintenance effort,
which is what we spend to keep the post-release systems
functioning properly, has been reported to be the largest
share of the entire software cost; Estimates of the mainte-
nance cost may range from 60% to 80% of all efforts
expended by a development organization and the figure
continues to rise (Hanna, 1993; McConnell, 1996; Hatton,
1998; Erlikh, 2000; Sommerville, 2007). The challenge of
locating and fixing errors in the post-release systems still
exists, if not more pressing than in the development phase.
Knowing where the errors are likely to occur, or more
importantly, where the errors of various severity categories
are likely to occur in the post-release evolution of a system
is equally important as the same knowledge in the develop-
ment phase.

In this study, we intend to empirically investigate three
aspects of using metrics to predict class error probability
in the post-release evolution process. First, we want to
know whether software metrics can predict class error
probability (also known as error proneness in previous

R. Shatnawi, W. Li / The Journal of Systems and Software 81 (2008) 1868–1882 1869



Download	English	Version:

https://daneshyari.com/en/article/461637

Download	Persian	Version:

https://daneshyari.com/article/461637

Daneshyari.com

https://daneshyari.com/en/article/461637
https://daneshyari.com/article/461637
https://daneshyari.com/

