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a b s t r a c t

In this paper we are concerned on the semilinear elliptic problem
−∆u = −λ|u|q−2u + au + b(u+)p−1 in Ω,
u = 0, on ∂Ω,

where Ω ⊆ RN is a bounded domain with regular boundary ∂Ω , 1 < q < 2 < p ≤ 2∗.
If a is between two eigenvalues, we get the existence of three nontrivial solutions for the
problem above.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the semilinear elliptic problem
−∆u = −λ|u|q−2u + au + b(u+)p−1 in Ω,
u = 0 on ∂Ω,

(P)

where Ω ⊆ RN is a bounded domain with regular boundary ∂Ω , N ≥ 3, 1 < q < 2 < p ≤ 2∗, a ∈ R, b > 0, λ is a positive
parameter and u+

= max{u, 0}.
The weak solutions of the problem (P) correspond to critical points of the C1 functional Iλ, defined on H1

0 :≡ H1
0 (Ω) by

Iλ(u) =
1
2


|∇u|2 +

λ

q


|u|q −

a
2


u2

−
b
p


(u+)p, u ∈ H1

0 . (1)

After the appearance of [1], there has been increasing concern about multiple solutions of semilinear elliptic problem of
the type:

− ∆u = µ|u|q−2u + g(u) in Ω. (2)

When g is asymmetric and asymptotically linear this problem was considered in [8,9,13,18]. Here asymmetric means that
g satisfies an Ambrosetti–Prodi type condition (i.e. g− := limt→−∞ g(t)/t < λk < g+ := limt→+∞ g(t)/t). When g is
asymmetric and superlinear at +∞, g+ = ∞, this problem was approached in [8,13,15]. In [8] a Neumann problem was
considered and in [15] the authors studied a problem involving the p-Laplace operator. In [13], one was assumed that g(t)/t
crosses an eigenvalue of the Laplacian when the t varies from 0 to −∞ (i.e. g ′(0) < λk < g−). Similar hypotheses also
appear in [18]. Assumptions involving the first eigenvalue, as g ′(0), g− ≤ λ1, were considered in [8,9,15]. It is known that
crossing eigenvalues, in particular the first one, is related to existence and multiplicity for such problems. Notice that the
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nonlinearity g(t) = at + b(t+)p−1, with a > λ1, is not included in the cases count in the previous works. Moreover, similar
problems with µ = 0 were studied in [16] for Dirichlet problems, and in [2,17] for Neumann problems.

Our problem is also closely related to the class of superlinear Ambrosetti–Prodi problems:

− ∆u = au + (u+)p + f (x) in Ω, (3)

with f ∈ L2. For instance, this problem has a solution if ∥f ∥L2 is small enough (see [11]). Further results and references for
the above problem can be found in [5,6,10,12,19,20].

For the critical case, our main motivation to (P) is the Brezis–Nirenberg pioneering work [3], where the following critical
problem was considered

−∆u = au + |u|2
∗
−2u in Ω,

u = 0 on ∂Ω,

where a < λ1. They noticed that the problem had a breaking of compactness at the value SN/2

N , so that they constructed
minimax levels for the energy functional associated below this value. Such ideas have been permeating many later works
as well as ours. One of them was the Capozzi, Fortunato and Palmieri work [7]. They basically studied the problem above
with a between two eigenvalues. They showed that the problem above has a nontrivial solution for all a > 0 when N ≥ 5
and for a different from eigenvalues when N = 4.

We are denoting by 0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · · the eigenvalues of (−∆,H1
0 (Ω)) and by ϕj the correspondent

eigenfunctions. The H1
0 (Ω) norm and Lp(Ω) norm are represented by ∥ · ∥ and | · |p and we denote these spaces by H1

0 and
Lp, for simplicity, respectively.

In the following, we set up precisely the results obtained.

Theorem 1. Let N ≥ 3 and λk < a < λk+1. If 2 < p < 2∗, then, for λ small enough, (P) has at least three nontrivial solutions.

Theorem 2. Let N ≥ 4 and λk < a < λk+1. If p = 2∗, then, for λ small enough, (P) has at least three nontrivial solutions.

The major arguments of the proofs of our theorems are based on variational methods. As it is well-known, we have to
show some geometric conditions and prove a compactness condition. Provided with these tools, we obtain a negative and a
positive solution and the third one comes from the linking theorem. In order to do that, we follow some tricks used in [6,14].
In the next section, we show the (PS) condition for the energy functional. In the third section, we present the proofs of the
theorems above.

2. The (PS) condition

We begin by showing the (PS) condition for Iλ.

Lemma 1. Let λ1 < a, 2 < p ≤ 2∗ and λ > 0. Then every (PS) sequence of Iλ is bounded.

Proof. Let (un) be a (PS) sequence for Iλ, i.e., it satisfies12

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0 , (5)

where ϵn → 0 as n → ∞. By (4) and (5) we have

C + ϵn∥un∥ ≥

Iλ(un) −
1
2
⟨I ′λ(un), un⟩


=

λ

q
−

λ

2

 
|un|

q
+


b
2

−
b
p

 
(u+

n )p


≥


b
2

−
b
p

 
(u+

n )p.

Since p > 2 we get
(u+

n )p ≤ C + ϵn∥un∥. (6)

We also have by (5),

|⟨I ′λ(un), u−

n ⟩| =
∥u−

n ∥
2
+ λ|u−

n |
q
q − a|u−

n |
2
2

 ≤ ϵn∥u−

n ∥, (7)



Download English Version:

https://daneshyari.com/en/article/4616372

Download Persian Version:

https://daneshyari.com/article/4616372

Daneshyari.com

https://daneshyari.com/en/article/4616372
https://daneshyari.com/article/4616372
https://daneshyari.com

