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a b s t r a c t

Let {X(t), t ≥ 0}be a stationaryGaussianprocesswith zero-mean andunit variance. A deep
result derived in Piterbarg (2004) [23], which we refer to as Piterbarg’s max-discretisation
theorem gives the joint asymptotic behaviour (T → ∞) of the continuous time maximum
M(T ) = maxt∈[0,T ] X(t), and the maximum Mδ(T ) = maxt∈R(δ) X(t), with R(δ) ⊂ [0, T ]

a uniform grid of points of distance δ = δ(T ). Under some asymptotic restrictions on the
correlation function Piterbarg’s max-discretisation theorem shows that for the limit result
it is important to know the speed δ(T ) approaches 0 as T → ∞. The present contribution
derives the aforementioned theorem for multivariate stationary Gaussian processes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let {X(t), t ≥ 0} be a standard (zero-mean, unit-variance) stationary Gaussian process with correlation function r(·) and
continuous sample paths. A tractable and very large class of correlation functions satisfy

r(t) = 1 − C |t|α + o(|t|α) as t → 0 (1)

for some positive constant C and α ∈ (0, 2], see e.g., [21]. If further, the Berman condition (see [2] or [3])

lim
T→∞

r(T ) ln T = 0 (2)

holds, then it is well-known, see e.g., [16] that the maximum M(T ) = maxt∈[0,T ] X(t) obeys the Gumbel law as T → ∞,
namely

lim
T→∞

sup
x∈R

P{aT (M(T ) − bT ) ≤ x} − Λ(x)
 = 0 (3)

is valid with Λ(x) = exp(− exp(−x)), x ∈ R the cumulative distribution function of a Gumbel random variable and
normalising constants defined for all large T by

aT =
√
2 ln T , bT = aT + a−1

T ln

(2π)−1/2C1/αHαa

−1+2/α
T


. (4)
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Here Hα denotes the well-known Pickands constant given by the limit relation

Hα = lim
S→∞

S−1E

exp


max
t∈[0,S]

√
2Bα/2(t) − tα


∈ (0, ∞),

with Bα a standard fractional Brownian motion with Hurst index α, see e.g., [18] for recent characterisations of Bα . For the
main properties of Pickands and related constants, see for example [1,21,4,5,7,30,6,8,9]. We note in passing that the first
correct proof of the Pickands theorem where Hα appears (see [20]) is derived in [22].

We say that X is weakly dependent if its correlation function satisfies the Berman condition (2). A natural generalisation
of (2) is the following assumption

lim
T→∞

r(T ) ln T = r ∈ (0, ∞) (5)

in which case we say that X is a strongly dependent Gaussian process. [19] proves the limit theorem for the normalised
maximumof strongly dependent stationaryGaussian processes showing that the limiting distribution is amixture ofGumbel
and Gaussian distributions. In fact, a similar result is shown therein also for the extreme case that (5) holds with r = ∞with
the limiting distribution being Gaussian. For other related results on extremes of strongly dependent Gaussian sequences
and processes, we refer to [17,15,27,14,25,11,10], and the references therein.

In this paper M(T ) = sup0≤t≤T X(t), T > 0 denotes the continuous-time maximum and Mδ(T ) = maxt∈δN∩[0,T ] X(t)
stands for the maximum over the uniform grid δN ∩ [0, T ]. Under the assumption (1) we need to distinguish between three
types of grids: a uniform grid of points R(δ) = δN is called sparse if δ = δ(T ) is such that

lim
T→∞

δ(T )(2 ln T )1/α = D, (6)

with D = ∞. When (6) holds for some D ∈ (0, ∞), then the grid is referred to as the Pickands grid, whereas when (6) holds
with D = 0, it is called a dense grid. Throughout this paper we assume that α ∈ (0, 2].

[23] derived the joint asymptotic behaviour of Mδ(T ) and M(T ) for weakly dependent stationary Gaussian processes.
As shown therein, after a suitable normalisation (as in (3)) Mδ(T ) and M(T ) are asymptotically independent, dependent or
totally dependent if the grid is a sparse, a Pickands or a dense grid, respectively. We shall refer to that result as Piterbarg’s
max-discretisation theorem.

For a large class of locally stationary Gaussian processes [12] proved a similar result to [23] considering only sparse
and dense grids. In another investigation concerning the storage process with fractional Brownian motion as input, it was
shown in [13] that the continuous time maximum and the discrete time maximum over the dense grid are asymptotically
completely dependent. [26,28] recently proved Piterbarg’s max-discretisation theorem for strongly dependent stationary
Gaussian processes, whereas [24] derives similar results for sparse and dense grids for standardisedmaximum of stationary
Gaussian processes. Novel and deep results concerning stationary non-Gaussian processes are derived in [29].

As noted in [23] derivation of the joint asymptotic behaviour of Mδ(T ) and M(T ) is important for theoretical problems
and at the same time is crucial for applications, see [23,12,24] for more details.

Themain contribution of this paper is the derivation of Piterbarg’smax-discretisation theorem formultivariate stationary
Gaussian processes. Our results show that, despite the high technical difficulties, it is possible to state Piterbarg’s result
in multidimensional settings allowing for asymptotic conditions and the two maxima are no longer asymptotically
independent.

The brief organisation of the paper is as follows. In Section 2 we present the principal results. Section 3 presents some
auxiliary results followed by Section 4 which is dedicated to the proofs of our main theorems. Several technical lemmas and
the proof of Lemma 3.1 are displayed in the Appendix.

2. Main results

Consider (X1(t), . . . , Xp(t)), p ∈ N a p-dimensional centred Gaussian vector process with covariance functions rkk(τ ) =

Cov(Xk(t), Xk(t + τ)), k ≤ p. Hereafter we shall assume that the components have continuous sample paths and further
Cov(Xk(t), Xl(t + τ)) does not dependent on t so we shall write

rkl(τ ) = Cov(Xk(t), Xl(t + τ))

for the cross-covariance function. Further we shall suppose that each component Xi has a unit variance function; in short
we shall refer to such vector processes as standard stationary Gaussian vector processes. Similarly to (1) we suppose that
for all indices k ≤ p

rkk(t) = 1 − C |t|α + o(|t|α) as t → 0, (7)

with some positive constants C , and further

lim
T→∞

rkl(T ) ln T = rkl ∈ (0, ∞) (8)

holds for 1 ≤ k, l ≤ p. In order to exclude the possibility that Xk(t) = ±Xl(t + t0) for some k ≠ l, and some choice of t0 and
+ or −, we assume that
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