Regularization by a modified quasi-boundary value method of the ill-posed problems for differential-operator equations of the first order

K. Bessila
Laboratory of Applied Mathematics and Modeling, University Constantine 1, P.O. Box 25000, Constantine, Algeria

A R T I C L E IN F O

Article history:

Received 9 March 2013
Available online 16 July 2013
Submitted by Barbara Kaltenbacher

Keywords:

Final value problem
Initial value problem
Ill-posed problem
Quasi-boundary value problem

A B S TRACT

In this paper, we consider the differential-operator equation

$$
\frac{d u(t)}{d t}+A u(t)=0
$$

with A a self-adjoint unbounded operator coefficient, which does not have a fixed sign. The Cauchy problem for the equation above with conditions of the form

$$
u(0)=f \quad \text { or } \quad u(T)=f,
$$

is known to be an ill-posed problem. In this work, we will use a modified quasi-boundary value method; we obtain an approximate non-local problem depending on a small parameter $\alpha \in] 0,1[$. We show that the approximate problems are well-posed and that their solutions converge if the original problem has a classical solution. We also obtain a convergence result for these solutions.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a Hilbert separable space, and let A be an unbounded self-adjoint operator in H with arbitrary sign, and which admits a compact inverse A^{-1}.

In this paper we consider the following problem:
Find a function $u:[0, T] \longrightarrow H$, that satisfies the equation

$$
\begin{equation*}
\frac{d u(t)}{d t}+A u(t)=0, \quad t \in[0, T] \tag{1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0)=f \tag{2}
\end{equation*}
$$

or the final condition

$$
\begin{equation*}
u(T)=f, \tag{3}
\end{equation*}
$$

where f is a given element in H.
Such forward Cauchy problems (1), (2) and backward Cauchy problems (1), (3) are ill-posed problems. Even though a unique solution in $[0, T]$ exists, it does not depend continuously on the value of f. We mention that the class of well-posed forward and ill-posed backward problems (corresponding in our case to A being of constant sign, positive or negative) has been treated by many authors, using many different approaches. Lavrentiev [5], Lattes and Lions [4], Miller [6], Payne [7]

[^0]and Showalter [8] have studied this problem by perturbing the operator A, and others, such as the authors of [3,1,9], used perturbation of the final value condition.

A similar problem is treated in a different way by N.I. Yurchuk and M. Ababneh [10]; they approximate the problems (1), (2) and (1), (3) by introducing into Eq. (1) the non-standard condition

$$
\begin{equation*}
\alpha u(0)+(1-\alpha) u(T)=f \tag{4}
\end{equation*}
$$

Also, we should mention that non-standard conditions of the form (4) for parabolic equations have been considered in [1].
In this work we approximate the problems (1), (2) and (1), (3) as follows:
Find the function $u:[0, T] \longrightarrow H$ that satisfies Eq. (1) and the non-local boundary condition

$$
\begin{equation*}
\alpha u(0)+(1-\alpha) u(T)+\alpha(1-\alpha)\left(u^{\prime}(T)-u^{\prime}(0)\right)=f \tag{5}
\end{equation*}
$$

where $\alpha \in] 0,1[$.
We see formally, when α tends towards 1 (resp. α tends towards 0), that the problem (1), (5) becomes the problem (1), (2) (resp. the problem (1), (3)).

Following $[2,9]$, the related approximate problem is called the quasi-boundary value problem (QBVP). We show that the approximate problems (1), (5) are well-posed for each $\alpha \in] 0,1\left[\right.$, and that their classical solutions u_{α} have the following properties:

$$
\lim _{\alpha \rightarrow 0}\left\|u_{\alpha}(T)-f\right\|=0 ; \quad \lim _{\alpha \rightarrow 1}\left\|u_{\alpha}(0)-f\right\|=0
$$

Furthermore, if the problem (1), (3) (resp. the problem (1), (2)) has a classical solution u_{F} (resp. u_{I}) then the sequence $\left(u_{\alpha}^{\prime}(0)\right)_{\alpha}\left(\operatorname{resp} .\left(u_{\alpha}^{\prime}(T)\right)_{\alpha}\right)$ converges in H when $\alpha \rightarrow 0($ resp. $\alpha \rightarrow 1)$.

2. The approximate problem

In the following we study the problem (1), (5). We need a definition:
Definition 1. The function $u_{\alpha}:[0, T] \longrightarrow H$ is called the classical solution of the problem (1), (5) if $u_{\alpha} \in C^{1}([0, T], H)$, $u_{\alpha}(t) \in D(A), \forall t \in[0, T]$, satisfies Eq. (1) and the condition (5).

Since we assumed that A admits an inverse A^{-1} compact, let us denote by $\left(\lambda_{i}\right)_{i \geq 1}$ the positive eigenvalues of A, by $\left(\mu_{j}\right)_{j \geq 1}$ the negative eigenvalues of A, by $\left(\varphi_{i}\right)_{i \geq 1}$ the eigenvectors of A corresponding to eigenvalues $\left(\lambda_{i}\right)_{i \geq 1}$, and by $\left(\psi_{j}\right)_{j \geq 1}$ the eigenvectors of A corresponding to eigenvalues $\left(\mu_{j}\right)_{j \geq 1}$.
The system $\left\{\left(\psi_{j}\right)_{j \geq 1},\left(\varphi_{i}\right)_{i \geq 1}\right\}$ of the eigenvectors of the operator A form an orthogonal system in H; in addition we can assume that $\left\|\varphi_{i}\right\|=1$ and $\left\|\psi_{j}\right\|=1, \forall i, j \geq 1$.
Thus, for each $f \in H$, we can represent f in the form

$$
\begin{equation*}
f=\sum_{j=1}^{+\infty} a_{j} \psi_{j}+\sum_{i=1}^{+\infty} b_{i} \varphi_{i} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{j}=\left(f, \psi_{j}\right), \quad b_{i}=\left(f, \varphi_{i}\right), \quad \forall i, j \geq 1 \tag{7}
\end{equation*}
$$

If the problem (1), (2) (resp. the problem (1), (3)) admits a solution u_{I} (resp. u_{F}), then this solution is represented in the form

$$
\begin{align*}
& u_{I}(t)=\sum_{j=1}^{+\infty} a_{j} e^{-\mu_{j} t} \psi_{j}+\sum_{i=1}^{+\infty} b_{i} e^{-\lambda_{i} t} \varphi_{i}, \quad \forall t \in[0, T] \tag{8}\\
& u_{F}(t)=\sum_{j=1}^{+\infty} a_{j} e^{\mu_{j}(T-t)} \psi_{j}+\sum_{i=1}^{+\infty} b_{i} e^{\lambda_{i}(T-t)} \varphi_{i}, \quad \forall t \in[0, T] \tag{9}
\end{align*}
$$

If the problem (1), (5) admits a solution u_{α}, then this solution is represented in the form

$$
\begin{equation*}
u_{\alpha}(t)=\sum_{j=1}^{+\infty} \beta_{j} a_{j} e^{\mu_{j}(T-t)} \psi_{j}+\sum_{i=1}^{+\infty} \gamma_{i} b_{i} e^{-\lambda_{i} t} \varphi_{i}, \quad \forall t \in[0, T] \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta_{j}=\left[\alpha e^{\mu_{j} T}+(1-\alpha)-\alpha(1-\alpha) \mu_{j}\left(1-e^{\mu_{j} T}\right)\right]^{-1} \tag{11}\\
& \gamma_{i}=\left[\alpha+(1-\alpha) e^{-\lambda_{i} T}+\alpha(1-\alpha) \lambda_{i}\left(1-e^{-\lambda_{i} T}\right)\right]^{-1}
\end{align*}
$$

https://daneshyari.com/en/article/4616378

Download Persian Version:
https://daneshyari.com/article/4616378

Daneshyari.com

[^0]: E-mail address: bessila.khaled@gmail.com.

