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a b s t r a c t

In this paper, we use fractal structures to study a new approach to the Hausdorff dimension
from both continuous and discrete points of view.We show that it is possible to generalize
the Hausdorff dimension in the context of Euclidean spaces equipped with their natural
fractal structure. To do this, we provide three definitions of fractal dimension for a fractal
structure and study their relationships and mathematical properties.

One of these definitions is in terms of finite coverings by elements of the fractal
structure. We prove that this dimension is equal to the Hausdorff dimension for compact
subsets of Euclidean spaces. This may be the key for the creation of new algorithms to
calculate the Hausdorff dimension of these kinds of space.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The importance of fractal patterns in science is supported by a great number of applications to diverse research areas
where fractals have been identified in recent years. In this way, one of themain tools that have been used to study fractals is
the fractal dimension, usually understood as the classical box-counting or Hausdorff dimension, since it is the basic invariant
of a fractal set that provides useful information about its complexity. Thus, note that fractal dimension theory has been
widely used in physical applications such as the study of dynamical systems [7], strange attractors [11], cosmology [4],
geophysics [12], and quantum theory [15], to name just a few.

The box-counting dimension ismore useful for practical applicationswhereas the Hausdorff dimension presents ‘‘better’’
analytical properties, since its definition is based on a measure. Nevertheless, the Hausdorff dimension can be difficult or
even impossible to estimate in empirical applications. Accordingly, though thesemodels to determine the fractal dimension
of a setmay be defined for anymetrizable space,most of the empirical applications of fractal dimension are considered in the
context of Euclidean spaces with box-counting dimension. However, the Hausdorff dimension is still used to classify spaces.
For instance, in [14], the authors apply the Hausdorff dimension to classify Moran fractals by a quasi-Lipschitz equivalence.
In addition to that, note that, in recent years, some effort has been made in order to extend the use of the box-counting
dimension in higher-dimensional Euclidean spaces (see [20]) and to provide new definitions of fractal dimension based on
probability measures by means of variational principles (see [13]).

The introduction of fractal structures is very suitable for studying fractals from the point of view of asymmetric topology.
In particular, fractal structures have appeared in some contexts where their use is natural, such as transitive quasi-
uniformities, metrization, space-filling curves, topological and fractal dimensions, and self-similar sets. See [16,17] for a
detailed description of them.
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It turns out that the concept of fractal structure is especially suitable to provide a definition of fractal dimension. In
this way, as has been shown in some recent papers (see [8,9]), it is possible to define new concepts of fractal dimension to
calculate this quantity for any space with respect to a fractal structure. Thus, in a first attempt, we provided two models of
fractal dimension for a fractal structure that generalized the classical box-counting dimension in the context of Euclidean
spaces equipped with their natural fractal structure. In addition to that, they allowed us to calculate the fractal dimension
in non-Euclidean contexts such as the domain of words (see [10]). On the other hand, in [8, Definition 4.2], we introduced
the so-called fractal dimension III, which was a new model of fractal dimension based on an appropriate discretization of
both the Hausdorff measure and the Hausdorff dimension. This has been successfully applied to financial markets [18].

This paper has a double purpose. First, we look for new models of fractal dimension for a fractal structure that could
allow us to approach the Hausdorff dimension in the context of Euclidean spaces, and even generalize it. Additionally, since
in some research papers a way to calculate the Hausdorff dimension of some kind of sets has been investigated (see [19] for
instance), we also look for a definition of fractal dimension for a fractal structure and a theoretical result that could allow us
to computationally calculate the Hausdorff dimension of a compact Euclidean subset.

Thus, the organization of the paper is as follows. In Section 2,we include some concepts, notation, and results about fractal
structures and fractal dimensions. In Section 3.1,we formally define fractal dimensions IV, V, andVI for a fractal structure and
show some results that relate these definitions to each other, and also to the classical fractal dimensions and the so-called
fractal dimensions I, II, and III (that were introduced and studied in detail in previous papers). In Section 3.3, we explore
some specific analytical properties of fractal dimension VI, and show that its definition is based on a measure, as it happens
with Hausdorff dimension. In addition, we present our main theorems in Section 3.4. First, we show in Theorem 3.10 and
Corollary 3.11 that both fractal dimensions V and VI generalize the Hausdorff dimension in the Euclidean context, and then
we prove in Theorem3.13 that the fractal dimension IV of any bounded Euclidean subset is equal to the Hausdorff dimension
of its closure. This is the theoretical result we could apply in order to provide a computational approach to the Hausdorff
dimension of Euclidean compact subsets. Thus, fractal dimension IV gives an intermediate model between box-counting
and Hausdorff dimensions that could be very useful in future applications.

2. Preliminaries

The main purpose of this section is to recall some necessary notation, concepts, and results that will be helpful in this
paper. In this way, we will focus on fractal structures, box-counting and fractal dimensions I and II models, and Hausdorff
dimension and fractal dimension III definitions.

2.1. Fractal structures

Fractal structures constitute the main concept we use in this paper to develop a new theory about fractal dimension. The
concept of fractal structure was first introduced in [1] from a topological point of view to characterize non-Archimedeanly
quasi-metrizable spaces, but it can also be used to study fractals. For example, in [3] it was used to study attractors of iterated
function systems.

Let Γ1 and Γ2 be two coverings of X . We will write Γ1 ≺ Γ2 to denote that Γ1 is a refinement of Γ2, namely, for all A ∈ Γ1,
there exists B ∈ Γ2 such that A ⊆ B. In addition, the notation Γ1 ≺≺ Γ2 means that Γ1 ≺ Γ2, and, for all B ∈ Γ2, we have
that B =


{A ∈ Γ1 : A ⊆ B}.

Definition 2.1. A fractal structure on a set X is a countable family of coverings of X ,0 = {Γn : n ∈ N}, such thatΓn+1 ≺≺ Γn,
for all n ∈ N. (X, 0) is called a generalized fractal space or simply a GF-space.

The topology induced by the fractal structure on X is given by the neighborhood base U0
x = {Uxn : n ∈ N} for each x ∈ X ,

where Uxn = X \


{A ∈ Γn : x ∉ A}.
The coverings of 0 are called levels, so Γn is level n of fractal structure 0.
A fractal structure 0 is said to be finite if all levels Γn are finite coverings.

Note that any level of a fractal structure is a closure-preserving closed covering (see [2, Proposition 2.4]).

2.2. Box-counting dimension and fractal dimensions I and II

The popularity of the box-counting dimension is mainly due to the possibility of its effective calculation and empirical
estimation in Euclidean contexts. The basic theory of the box-counting dimension can be found in [6]. Next, we recall the
definition of the standard box-counting dimension.

Definition 2.2. The (lower/upper) box-counting dimension of a subset F ⊆ Rd is given by the following (lower/upper) limit:

dimB(F) = lim
δ→0

logNδ(F)

− log δ
,

where δ is the scale and Nδ(F) can be calculated as the number of δ-cubes that intersect F . See [6, Equivalent Definitions 3.1]
for other equivalent ways to calculate Nδ(F).
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