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a b s t r a c t

We consider the minimization problem of an integral functional with integrand that is not
convex in the control on solutions of a control system described by fractional differential
equationwithmixed nonconvex constraints on the control. A relaxation problem is treated
alongwith the original problem. It is proved that, under general assumptions, the relaxation
problem has an optimal solution, and that for each optimal solution there is a minimizing
sequence of the original problem that converges to the optimal solutionwith respect to the
trajectory, the control, and the functional in appropriate topologies simultaneously.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we are interested in control systems described by fractional differential equations of the type
CDαt x(t) = Ax(t)+ B(t)u(t), t ∈ J = [0, b], with 0 < α < 1,
x(0) = x0,

(1)

with mixed nonconvex constraints on the control,

u(t) ∈ U(t, x(t)) a.e. on J, (2)

where CDαt is the Caputo fractional derivative of order α, b > 0 is a finite real number, A is the infinitesimal generator of
a strongly continuous semigroup {T (t), t ≥ 0} in a Banach space X , B : J → L(Y , X) (L(Y , X) is the space of continuous
linear operators from Y into X), and U : J × X → 2Y

\ {∅} is a multivalued map with closed values that is not necessarily
convex. The space Y is a separable reflexive Banach space modeling the control space.

Let R̄ = (−∞,+∞]. For a numerical function g : J × X × Y → R, we consider problem (P):

I(x, u) =


J
g(t, x(t), u(t))dt → inf (P)

on solutions of the control system (1) with constraint (2).
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Let gU : J × X × Y → R̄ be the function defined by

gU(t, x, u) =


g(t, x, u), u ∈ U(t, x),
+∞, u ∉ U(t, x),

and let g∗∗(t, x, u) be the bipolar of the function u → gU(t, x, u) [6]. Alongwith problem (P), we also consider the relaxation
problem (RP):

I∗∗(x, u) =


J
g∗∗(t, x(t), u(t))dt → inf (RP)

on the solutions of control system (1) with the convexified constraints

u(t) ∈ coU(t, x(t)) a.e. on J (3)

on the control. Here, co stands for the closed convex hull of a set.
The aimof this paper is to establish an interrelation between the solutions of problem (P) andproblem (RP). Under certain

assumptions, it is proved that (RP) has a solution and that for any solution of (RP) there is a minimizing sequence for (P)
converging in the appropriate topologies to the solution of (RP). The convergence takes place simultaneously with respect
to the trajectory, the control, and the functional. This property is usually called relaxation [6]. The main result obtained in
our work is the following theorem.

Theorem 1.1. Problem (RP) has a solution, and

min
(x,u)∈RcoU

I∗∗(x, u) = inf
(x,u)∈RU

I(x, u). (4)

For any solution (x∗, u∗) of problem (RP) there exists a minimizing sequence (xn, un) ∈ RU , n ≥ 1 for problem (P) which

converges to (x∗, u∗) in the spaces C(J, X)× ω-L
1
β (J, Y ) and C(J, X)× L

1
β
ω (J, Y ), and the following formula holds:

lim
n→∞

sup
0≤t1≤t2≤b

 t2

t1


g∗∗(s, x∗(s), u∗(s))− g(s, xn(s), un(s))


ds
 = 0. (5)

Conversely, if (xn, un), n ≥ 1 is a minimizing sequence for problem (P), then there is a subsequence (xnk , unk), k ≥ 1 of the
sequence (xn, un), n ≥ 1, and a solution (x∗, u∗) of problem (RP) such that the subsequence (xnk , unk), k ≥ 1, converges to

(x∗, u∗) in C(J, X)× ω-L
1
β (J, Y ) and relation (5) holds for this subsequence (xnk , unk), k ≥ 1.

Here, RU and RcoU denote the sets of all solutions of control system (1), (2) and control system (1), (3), respectively.
The results obtained in this paper are an analogue of the classical Bogolyubov theorem [3,4,25] in the calculus of variations

with constraints being the sets of solutions of control systems (1), (2) and (1), (3), which also allow us to justify, while
performing numerical calculations, the passage from a nonconvex optimal control problem to the convexified optimal
control problem and the approximation of the latter by a sequence of smooth and convex optimal control problems for
which the optimality conditions are known and methods of their numerical resolution are well developed.

Fractional differential equations have recently proved to be valuable tools in themodeling ofmany phenomena in various
fields of science and engineering. Indeed, we can find numerous applications in viscoelasticity, electrochemistry, control,
porous media, electromagnetic, etc.; see [7–9,14,17,15], for example. There has been significant development in fractional
differential equations in recent years; see the monographs of Kilbas et al. [12] and Miller et al. [18], and the references
therein. As for the study of fractional semilinear differential equations, we can refer to [31,32,29] for the existence results.
Approximate controllability was considered in [16,13,22], and [30] is concerned with optimal control theory.

For the control problemof semilinear evolution inclusions, see, for example, [20,19]. For optimal control problems similar
to ours of the subdifferential type, see, for example, [21,26,24].

In the next section, we will introduce some useful preliminaries and give assumptions on the data. In Section 3, some
auxiliary results needed in the proof of our main results are presented. Section 4 deals with the existence results of the
control systems. The main results are proved in Section 5.

2. Preliminaries and assumptions

Let J = [0, b] be the closed interval of the real line with Lebesgue measureµ and σ -algebraΣ ofµmeasurable sets. The
norm of the space X (or Y ) will be denoted by ∥ · ∥X (or ∥ · ∥Y ). We denote by C(J, X) the space of all continuous functions
from J into X with the supnorm given by ∥x∥C = supt∈J ∥x(t)∥X for x ∈ C(J, X). For a Banach space X , the symbol ω-X
stands for X equipped with the weak σ(X, X∗) topology. The same notation will be used for subsets of X . In all other cases
we assume that X and its subsets are equipped with the strong (normed) topology.
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