

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

A multiplicative property characterizes quasinormal composition operators in L^2 -spaces

Piotr Budzyński ^a, Zenon Jan Jabłoński ^b, Il Bong Jung ^c, Jan Stochel ^{b,*}

- ^a Katedra Zastosowań Matematyki, Uniwersytet Rolniczy w Krakowie, ul. Balicka 253c, PL-30198 Kraków, Poland
- ^b Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, PL-30348, Kraków, Poland
- ^c Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea

ARTICLE INFO

Article history: Received 2 January 2013 Available online 24 July 2013 Submitted by J.A. Ball

Keywords: Composition operator Quasinormal operator

ABSTRACT

A densely defined composition operator in an L^2 -space induced by a measurable transformation ϕ is shown to be quasinormal if and only if the Radon–Nikodym derivatives h_{ϕ^n} attached to powers ϕ^n of ϕ have the multiplicative property: $h_{\phi^n} = h_{\phi}^n$ almost everywhere for $n = 0, 1, 2, \ldots$

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Composition operators (in L^2 -spaces over σ -finite measure spaces) play an essential role in ergodic theory. They are also interesting objects of operator theory. The foundations of the theory of bounded composition operators are well-developed. In particular, the questions of their boundedness, normality, quasinormality, subnormality, seminormality etc. were answered (see e.g., [21,19,26,12,15,16,9,11,22,6] for the general approach and [10,17,23,8,24] for special classes of operators; see also the monograph [22]).

As opposed to the bounded case, the theory of unbounded composition operators is at a rather early stage of development. There are few papers concerning this issue. Some basic facts about unbounded composition operators can be found in [7,13,4]. In a recent paper [5], we gave the first ever criterion for subnormality of unbounded densely defined composition operators, which states that if such an operator admits a measurable family of probability measures that satisfy the consistency condition (see (CC)), then it is subnormal (cf. [5, Theorem 9]). The aforesaid criterion becomes a full characterization of subnormality in the bounded case. Recall that the celebrated Lambert's characterization of subnormality of bounded composition operators (cf. [15]) is no longer true for unbounded ones (see [14, Theorem 4.3.3] and [4, Section 11]). It turns out that the consistency condition is strongly related to quasinormality.

Quasinormal operators, which were introduced by A. Brown in [3], form a class of operators which is properly larger than that of normal operators, and properly smaller than that of subnormal operators (see [3, Theorem 1] and [25, Theorem 2]). It was A. Lambert who noticed that if C_{ϕ} is a bounded quasinormal composition operator with a surjective symbol ϕ , then the Radon–Nikodym derivatives h_{ϕ^n} , $n = 0, 1, 2, \ldots$, (see (2.1)) have the following multiplicative property (cf. [15, p. 752]):

 $h_{\phi^n} = h_{\phi}^n$ almost everywhere for $n = 0, 1, 2, \dots$

The aim of this article is to show that the above completely characterizes quasinormal composition operators regardless of whether they are bounded or not, and regardless of whether ϕ is surjective or not (cf. Theorem 3.1). The proof of

E-mail addresses: piotr.budzynski@ur.krakow.pl (P. Budzyński), Zenon.Jablonski@im.uj.edu.pl (Z.J. Jabłoński), ibjung@knu.ac.kr (I.B. Jung), Jan.Stochel@im.uj.edu.pl (J. Stochel).

^{*} Corresponding author.

this characterization depends on the fact that a quasinormal composition operator always admits a special measurable family of probability measures which satisfy the consistency condition (CC). This leads to yet another characterization of quasinormality (see condition (iii) of Theorem 3.1).

2. Preliminaries

We write $\mathbb C$ for the field of all complex numbers and denote by $\mathbb R_+$, $\mathbb Z_+$ and $\mathbb N$ the sets of nonnegative real numbers, nonnegative integers and positive integers, respectively. Set $\overline{\mathbb R}_+ = \mathbb R_+ \cup \{\infty\}$. Given a sequence $\{\Delta_n\}_{n=1}^\infty$ of sets and a set Δ such that $\Delta_n \subseteq \Delta_{n+1}$ for every $n \in \mathbb N$, and $\Delta = \bigcup_{n=1}^\infty \Delta_n$, we write $\Delta_n \nearrow \Delta$ (as $n \to \infty$). The characteristic function of a set Δ is denoted by χ_Δ (it is clear from the context on which set the function χ_Δ is defined).

The following lemma is a direct consequence of [18, Proposition I-6-1] and [1, Theorem 1.3.10]. It will be used in the proof of Theorem 3.1.

Lemma 2.1. Let \mathscr{P} be a semi-algebra of subsets of a set X and ρ_1 , ρ_2 be finite measures defined on the σ -algebra generated by \mathscr{P} such that $\rho_1(\Delta) = \rho_2(\Delta)$ for all $\Delta \in \mathscr{P}$. Then $\rho_1 = \rho_2$.

Let A be a linear operator in a complex Hilbert space \mathcal{H} . Denote by $\mathfrak{D}(A)$ and A^* the domain and the adjoint of A (in case it exists). If A is closed and densely defined, then A has a (unique) polar decomposition A = U|A|, where U is a partial isometry on \mathcal{H} such that the kernels of U and A coincide and |A| is the square root of A^*A (cf. [2, Section 8.1]). A densely defined linear operator A in \mathcal{H} is said to be *quasinormal* if A is closed and $U|A| \subseteq |A|U$, where A = U|A| is the polar decomposition of A. We refer the reader to [3] and [25] for basic information on bounded and unbounded quasinormal operators, respectively.

Throughout the paper (X, \mathscr{A}, μ) will denote a σ -finite measure space. We shall abbreviate the expressions "almost everywhere with respect to μ " and "for μ -almost every x" to "a.e. $[\mu]$ " and "for μ -a.e. x", respectively. As usual, $L^2(\mu) = L^2(X, \mathscr{A}, \mu)$ denotes the Hilbert space of all square integrable complex functions on X with the standard inner product. Let $\phi: X \to X$ be an \mathscr{A} -measurable transformation of X, i.e., $\phi^{-1}(\Delta) \in \mathscr{A}$ for all $\Delta \in \mathscr{A}$. Denote by $\mu \circ \phi^{-1}$ the measure on \mathscr{A} given by $\mu \circ \phi^{-1}(\Delta) = \mu(\phi^{-1}(\Delta))$ for $\Delta \in \mathscr{A}$. We say that ϕ is nonsingular if $\mu \circ \phi^{-1}$ is absolutely continuous with respect to μ . If ϕ is a nonsingular transformation of X, then the map $C_{\phi}: L^2(\mu) \supseteq \mathcal{D}(C_{\phi}) \to L^2(\mu)$ given by

$$\mathfrak{D}(C_{\phi}) = \{ f \in L^2(\mu) : f \circ \phi \in L^2(\mu) \} \text{ and } C_{\phi}f = f \circ \phi \text{ for } f \in \mathfrak{D}(C_{\phi}),$$

is well-defined (and vice versa). Call such C_{ϕ} a composition operator. Note that every composition operator is closed (see e.g., [4, Proposition 3.2]). If ϕ is nonsingular, then by the Radon–Nikodym theorem there exists a unique (up to sets of measure zero) \mathscr{A} -measurable function $h_{\phi}: X \to \overline{\mathbb{R}}_+$ such that

$$\mu \circ \phi^{-1}(\Delta) = \int_{\Delta} \mathsf{h}_{\phi} \mathsf{d}\,\mu, \quad \Delta \in \mathscr{A}. \tag{2.1}$$

It is well-known that C_{ϕ} is densely defined if and only if $h_{\phi} < \infty$ a.e. $[\mu]$ (cf. [7, Lemma 6.1]), and $\mathcal{D}(C_{\phi}) = L^{2}(\mu)$ if and only if $h_{\phi} \in L^{\infty}(\mu)$ (cf. [19, Theorem 1]). Given $n \in \mathbb{N}$, we denote by ϕ^{n} the n-fold composition of ϕ with itself; ϕ^{0} is the identity transformation of X. Note that if ϕ is nonsingular and $n \in \mathbb{Z}_{+}$, then ϕ^{n} is nonsingular and thus $h_{\phi^{n}}$ makes sense. Clearly $h_{\phi^{0}} = 1$ a.e. $[\mu]$.

Suppose that $\phi: X \to X$ is a nonsingular transformation such that $h_{\phi} < \infty$ a.e. $[\mu]$. Then the measure $\mu|_{\phi^{-1}(\mathscr{A})}$ is σ -finite (cf. [4, Proposition 3.2]). Hence, by the Radon–Nikodym theorem, for every \mathscr{A} -measurable function $f: X \to \overline{\mathbb{R}}_+$ there exists a unique (up to sets of measure zero) $\phi^{-1}(\mathscr{A})$ -measurable function $E(f): X \to \overline{\mathbb{R}}_+$ such that

$$\int_{\phi^{-1}(\Delta)} f \, \mathrm{d} \, \mu = \int_{\phi^{-1}(\Delta)} \mathsf{E}(f) \, \mathrm{d} \, \mu, \quad \Delta \in \mathscr{A}. \tag{2.2}$$

We call E(f) the conditional expectation of f with respect to $\phi^{-1}(\mathscr{A})$ (see [4] for recent applications of the conditional expectation in the theory of unbounded composition operators; see also [20] for the foundations of the theory of probabilistic conditional expectation). It is well-known that

if
$$0 \le f_n \nearrow f$$
 and f, f_n are \mathscr{A} -measurable, then $\mathsf{E}(f_n) \nearrow \mathsf{E}(f)$, (2.3)

where $g_n \nearrow g$ means that for μ -a.e. $x \in X$, the sequence $\{g_n(x)\}_{n=1}^{\infty}$ is monotonically increasing and convergent to g(x). Now we state three results, each of which will be used in the proof of Theorem 3.1. The first one provides a necessary and sufficient condition for the Radon–Nikodym derivatives h_{ϕ^n} , $n \in \mathbb{N}$, to have the following semigroup property.

Lemma 2.2 ([4, Lemma 9.1]). If ϕ is a nonsingular transformation of X such that $h_{\phi} < \infty$ a.e. $[\mu]$ and $n \in \mathbb{N}$, then the following two conditions are equivalent:

$$\begin{array}{l} \text{(i) } \mathsf{h}_{\phi^{n+1}} = \mathsf{h}_{\phi^n} \cdot \mathsf{h}_{\phi} \text{ a.e. } [\mu], \\ \text{(ii) } \mathsf{E}(\mathsf{h}_{\phi^n}) = \mathsf{h}_{\phi^n} \circ \phi \text{ a.e. } [\mu|_{\phi^{-1}(\mathscr{A})}]. \end{array}$$

The second result is a basic description of quasinormal composition operators.

¹ All measures considered in this paper are assumed to be positive.

Download English Version:

https://daneshyari.com/en/article/4616400

Download Persian Version:

https://daneshyari.com/article/4616400

<u>Daneshyari.com</u>