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a b s t r a c t

We use Morse theory to study impulsive problems. First we consider asymptotically
piecewise linear problems with superlinear impulses, and prove a new existence result
for this class of problems using the saddle point theorem. Next we compute the critical
groups at zero when the impulses are asymptotically linear near zero, in particular, we
identify an important resonance set for this problem. As an application, we finally obtain
a nontrivial solution for asymptotically piecewise linear problems with impulses that are
asymptotically linear at zero and superlinear at infinity. Our results here are based on the
simple observation that the underlying Sobolev space naturally splits into a certain finite
dimensional subspace where all the impulses take place and its orthogonal complement
that is free of impulsive effects.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Impulsive problems arise naturally in studies of evolutionary processes that involve abrupt changes in the state of the
system, triggered by instantaneous perturbations called impulses. Examples include games where players can affect the
game only at discrete instants (see Chikrii, Matychyn, and Chikrii [3]), two person zero sum gameswith separated impulsive
dynamics (see Crück, Quincampoix, and Saint-Pierre [5]), pulse vaccination strategy (see Stone, Shulgin, and Agur [11]),
and optimal impulsive harvesting (see Zhang, Shuai, and Wang [14]). Classical approaches to such problems include fixed
point theory (see, e.g., Lin and Jiang [8]) and the method of upper and lower solutions (see, e.g., Liu and Guo [9]). More
recently, variational methods have been widely used to study impulsive problems (see, e.g., Tian and Ge [12], Nieto and
O’Regan [10], Zhou and Li [16], Zhang and Yuan [15], Zhang and Li [13], Bai and Dai [1], Han andWang [7], and Gong, Zhang,
and Tang [6]).

In this paper we use Morse theory to study impulsive problems. First we consider asymptotically piecewise linear
problems with superlinear impulses. Although asymptotically piecewise linear nonlinearities are quite natural in this
setting, they donot seem tohave been studied in the literature.Wewill prove a newexistence result for this class of problems
using the saddle point theorem. Next we compute the critical groups at zero when the impulses are asymptotically linear
near zero. In particular, wewill identify an important resonance set for this problem. The effect of impulses on critical groups
has not been studied previously, to the best of our knowledge. As an application, we finally obtain a nontrivial solution for
asymptotically piecewise linear problems with impulses that are asymptotically linear at zero and superlinear at infinity.
Our results here are based on the simple observation that the underlying Sobolev space naturally splits into a certain finite
dimensional subspace where all the impulses take place and its orthogonal complement that is free of impulsive effects.
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Letm be a positive integer, let 0 = x0 < x1 < · · · < xm < xm+1 = 1, and consider the impulsive problem
−u′′

= f (x, u), x ∈ (0, 1) \ {x1, . . . , xm}

u(0) = u(1) = 0, u(x+

j ) = u(x−

j ), j = 1, . . . ,m
u′(x+

j ) = u′(x−

j ) − ıj(u(xj)), j = 1, . . . ,m,

(1.1)

where f is a Carathéodory function on (0, 1) × R,

u(x±

j ) = lim
x→xj
x≷xj

u(x), u′(x±

j ) = lim
x→xj
x≷xj

u′(x),

and ıj are continuous functions on R. Denoting by H1
0 (0, 1) the usual Sobolev space with the inner product

(u, v) =

 1

0
u′v′,

a weak solution of (1.1) is a function u ∈ H1
0 (0, 1) such that 1

0
u′v′

=

 1

0
f (x, u) v +

m
j=1

ıj(u(xj)) v(xj) ∀v ∈ H1
0 (0, 1).

Noting that H1
0 (0, 1) is continuously embedded in C[0, 1], we see that weak solutions coincide with the critical points of the

C1-functional

Φ(u) =
1
2

 1

0
(u′)2 −

 1

0
F(x, u) −

m
j=1

Ij(u(xj)), u ∈ H = H1
0 (0, 1),

where

F(x, t) =

 t

0
f (x, s) ds, Ij(t) =

 t

0
ıj(s) ds

are the primitives of f and ıj, respectively.
The closed linear subspace

N =

u ∈ H : u(xj) = 0, j = 1, . . . ,m


is important here since each Ij(0) = 0. For j = 1, . . . ,m, the mapping H → R, u → u(xj) is a bounded linear functional on
H and hence there is a unique wj ∈ H such that u(xj) =


u, wj


by the Riesz–Frechet representation theorem. In fact,

wj(x) =


(1 − xj) x, 0 ≤ x ≤ xj
xj (1 − x), xj ≤ x ≤ 1. (1.2)

Since xj are distinct, wj are linearly independent, so N is the orthogonal complement of them-dimensional subspaceM that
they span. Hence we have the orthogonal decomposition

H = N ⊕ M, u = v + w,

and

Φ(u) =
1
2

 1

0


(v′)2 + (w′)2


−

 1

0
F(x, u) −

m
j=1

Ij(w(xj)). (1.3)

We will make use of this splitting throughout the paper.
By (1.2), each w ∈ M is affine on the subintervals [xj−1, xj]. Since the space of continuous functions on [0, 1] that are

affine on these subintervals and vanish at the endpoints is also m-dimensional, it follows that M is precisely this subspace.
Then we also have

max
x∈[0,1]

|w(x)| = max
j=1,...,m

|w(xj)| ∀w ∈ M,

and this is an equivalent norm on this finite dimensional space.
The subspace N has the decomposition

N =

m+1
j=1

Nj, v =

m+1
j=1

vj



Download English Version:

https://daneshyari.com/en/article/4616422

Download Persian Version:

https://daneshyari.com/article/4616422

Daneshyari.com

https://daneshyari.com/en/article/4616422
https://daneshyari.com/article/4616422
https://daneshyari.com

