On quasi-similarity and reducing subspaces of multiplication operator on the Fock space

CrossMark

Yucheng Li*, Wenhua Lan, Jingli Liu
Department of Mathematics, Hebei Normal University, Hebei Province Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, PR China

ARTICLE INFO

Article history:

Received 6 May 2013
Available online 31 July 2013
Submitted by J.A. Ball

Abstract

Let $F_{\alpha}^{2}(\alpha>0)$ denote the Fock space which consists of all entire functions f in $L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$. We prove that the multiplication operator $M_{z^{n}}$ is quasi-similar to $\bigoplus_{1}^{n} M_{z}$ on F_{α}^{2}. Then the reducing subspaces of $M_{z^{n}}$ are characterized on F_{α}^{2}.

© 2013 Elsevier Inc. All rights reserved.

Keywords:

Fock space
Multiplication operator
Quasi-similarity
Reducing subspaces

1. Introduction

Let \mathbb{C} be the complex plane and $d A$ be ordinary area measure on \mathbb{C}. Let $F_{\alpha}^{2}(\alpha>0)$ denote the Fock space which consists of all entire functions f in $L^{2}\left(\mathbb{C}, d \lambda_{\alpha}\right)$, where $d \lambda_{\alpha}$ is the Gaussian measure, $d \lambda_{\alpha}(z)=\frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z)$. It is well known that F_{α}^{2} is a closed subspace of $L^{2}(\mathbb{C})$, and F_{α}^{2} is a Hilbert space with the reproducing kernel $K_{\alpha}(z, w)=e^{\alpha z \bar{w}}$. The normalized reproducing kernel at w is denoted by $k_{w}(z)=\frac{K_{\alpha}(z, w)}{\sqrt{K_{\alpha}(w, w)}}=e^{\alpha z \bar{w}-\frac{\alpha}{2}|w|^{2}}$. If $f, g \in F_{\alpha}^{2}$, the inner product of f and g is defined by $\langle f, g\rangle_{\alpha}=\int_{\mathbb{C}} f(z) \overline{g(z)} d \lambda_{\alpha}(z)$.

In studying an operator on a Hilbert space, it is of interest to characterize the commutant of a given operator, for such a characterization should help in understanding the structure of the operator. From the information of the commutant, people research the similar equivalence and unitary equivalence of operators. The commutant of an analytic Toeplitz operator on the Hardy space and the Bergman space has been studied extensively in the literature. We mention here that the papers [2-4,7,10,11] and the books [5,13] include a lot of the knowledge of the corresponding operator theory. In [12], Zhu obtained a complete description of the reducing subspaces of multiplication operators induced by the Blaschke product with two zeros on the Bergman space. In 2007, Jiang and Li (see [7]) proved that each analytic Toeplitz operator $M_{B(z)}$ is similar to n copies of the Bergman shift if and only if $B(z)$ is an n-Blaschke product. On the weighted Bergman space, Li (see [9]) proved that the multiplication operator $M_{z^{n}}$ is similar to $\bigoplus_{1}^{n} M_{z}$. In 2011, Ahmadi and Hedayatian (see [1]) generalized this result to bilateral shift operators. Jiang and Zheng in [8] showed that the main result in [7] holds on the weighted Bergman space. Recently, Douglas and Kim (see [6]) studied the reducing subspaces of an analytic multiplication operator $M_{z^{n}}$ on the Bergman space $A_{\alpha}^{2}\left(A_{r}\right)$ of the annulus A_{r}, and they showed that $M_{z^{n}}$ has exactly 2^{n} reducing subspaces.

[^0]In this paper, we first prove that the multiplication operator $M_{z^{n}}$ is quasi-similar to $\bigoplus_{1}^{n} M_{z}$ on the Fock space. We then characterize the commutant of the operator and show that $M_{z^{n}}$ has exactly 2^{n} reducing subspaces on the Fock space.

2. The quasi-similarity of $M_{z^{n}}(n \geq 2)$

Recall that $e_{n}(z)=\sqrt{\frac{\alpha^{n}}{n!}} z^{n}(n=0,1, \ldots)$ form an orthonormal basis of the Fock space. If we set $F_{j}=\operatorname{span}\left\{e_{n k+j}\right\}(j=$ $0,1, \ldots, n-1)$, then we have the following lemma.

Lemma 2.1. If $F_{j}=\operatorname{span}\left\{e_{n k+j}\right\}(j=0,1, \ldots, n-1)$, then
(i) $\left\{e_{n k+j}\right\}_{k=0}^{\infty}$ form an orthonormal basis of F_{j}.
(ii) $F_{\alpha}^{2}=F_{0} \bigoplus F_{1} \bigoplus \cdots \bigoplus F_{n-1}$.
(iii) F_{j} is a reducing subspace of $M_{z^{n}}$.

Proof. (i) Note that

$$
\begin{align*}
\left\langle e_{n k+j}, e_{n m+j}\right\rangle & =\int_{\mathbb{C}} \sqrt{\frac{\alpha^{n k+j}}{(n k+j)!}} z^{n k+j} \sqrt{\frac{\alpha^{n m+j}}{(n m+j)!}} \bar{z}^{n m+j} d \lambda_{\alpha}(z) \\
& =\lim _{R \rightarrow+\infty} \int_{D_{R}} \sqrt{\frac{\alpha^{n k+j}}{(n k+j)!}} z^{n k+j} \sqrt{\frac{\alpha^{n m+j}}{(n m+j)!}} \bar{z}^{n m+j} \frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z) \tag{2.1}
\end{align*}
$$

If $k=m$, we have

$$
\begin{align*}
\left\langle e_{n k+j}, e_{n m+j}\right\rangle & =\lim _{R \rightarrow+\infty} \frac{\alpha^{n k+j}}{(n k+j)!} \int_{0}^{2 \pi} d \theta \int_{0}^{R} r^{2(n k+j)} \frac{\alpha r}{\pi} e^{-\alpha r^{2}} d r \\
& =1 \tag{2.2}
\end{align*}
$$

If $k \neq m$, then $\left\langle e_{n k+j}, e_{n m+j}\right\rangle=0$.
(ii) It is easy to prove that $F_{j} \perp F_{t}, 0 \leq j \neq t \leq n-1$. Next, for $f \in F_{\alpha}^{2}$, we get that f has the form

$$
f=\sum_{k=0}^{\infty} a_{0 k} e_{n k}+\cdots+\sum_{k=0}^{\infty} a_{n-1, k} e_{n k+n-1}
$$

Suppose that $f=0$. Then from

$$
\begin{equation*}
\left\langle\sum_{k=0}^{\infty} \sum_{j=0}^{n-1} a_{j k} e_{n k+j}, e_{l}\right\rangle=0 \quad(l=0,1, \ldots) \tag{2.3}
\end{equation*}
$$

we obtain that $a_{j k}=0(j=0, \ldots, n-1, k=0,1, \ldots)$. That is, $0=\overbrace{0 \oplus 0 \oplus \cdots \oplus 0}^{n}$.
Therefore, $F_{\alpha}^{2}=F_{0} \bigoplus F_{1} \bigoplus \cdots \bigoplus F_{n-1}$.
(iii) It is easy to see that both F_{j} and F_{j}^{\perp} are invariant subspaces of $M_{z^{n}}$.

Let $\{\beta(k)\}_{k=0}^{\infty}$ be a sequence of positive numbers with $\beta(0)=1$. The Hilbert space $H^{2}(\beta)$ consists of all formal power series $f(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k}(z \in \mathbb{C})$, and $\|f\|_{\beta}^{2}=\sum_{k=0}^{\infty}|\hat{f}(k)|^{2} \beta(k)^{2}<\infty$. It is known that the multiplication operator M_{z} is bounded on $H^{2}(\beta)$ if and only if $\left\|M_{z}\right\|=\sup _{k} \frac{\beta(k+1)}{\beta(k)}<\infty$. We view the Fock space F_{α}^{2} as a Hilbert space $H^{2}(\beta)$, where $\beta(k)=\sqrt{\frac{k!}{\alpha^{k}}}$. So $\left\|M_{z}\right\|=\sup _{k} \sqrt{\frac{k+1}{\alpha}}=+\infty$.

Let H and K be complex Hilbert spaces. An operator X in $\mathcal{L}(H, K)$ is said to be quasi-invertible if X has zero kernel and dense range. Recall that for $A \in \mathscr{L}(H)$ and $B \in \mathscr{L}(K), A$ is quasi-similar to B if there exist two quasi-invertible operators S and T in $\mathcal{L}(H, K)$ and $\mathscr{L}(K, H)$ respectively such that $S A=B S$ and $A T=T B$.

Theorem 2.2. The multiplication operator $M_{z^{n}}$ is quasi-similar to $\bigoplus_{1}^{n} M_{z}$ on the Fock space.
Proof. Note that

$$
\begin{equation*}
M_{z} e_{k}=z \sqrt{\frac{\alpha^{k}}{k!}} z^{k}=\sqrt{\frac{k+1}{\alpha}} e_{k+1} \tag{2.4}
\end{equation*}
$$

https://daneshyari.com/en/article/4616434

Download Persian Version:

https://daneshyari.com/article/4616434

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hebycli@126.com (Y. Li), lanwenhua2006@126.com (W. Lan), jingliliu2011@126.com (J. Liu).

