

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and **Applications**

journal homepage: www.elsevier.com/locate/jmaa

Radon–Nikodým property and thick families of geodesics

Mikhail Ostrovskii

Department of Mathematics and Computer Science, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA

ARTICLE INFO

Article history: Received 2 July 2013 Available online 1 August 2013 Submitted by R.M. Aron

Keywords: Banach space Bilipschitz embedding Bush in a Banach space Geodesic Radon-Nikodým property

ABSTRACT

Banach spaces without the Radon-Nikodým property are characterized as spaces containing bilipschitz images of thick families of geodesics defined as follows. A family T of geodesics joining points u and v in a metric space is called *thick* if there is $\alpha > 0$ such that for every $g \in T$ and for any finite collection of points r_1, \ldots, r_n in the image of g, there is another uv-geodesic $\tilde{g} \in T$ satisfying the conditions: \tilde{g} also passes through r_1, \ldots, r_n , and, possibly, has some more common points with g. On the other hand, there is a finite collection of common points of g and \tilde{g} which contains r_1, \ldots, r_n and is such that the sum of maximal deviations of the geodesics between these common points is at least α .

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Radon-Nikodým property (RNP) is one of the most important isomorphic invariants of Banach spaces. We refer to [1–3,8,13] for systematic presentations of results on the RNP, and to [6,7] for recent work on the RNP.

In the recent work on metric embeddings a substantial role is played by existence and non-existence of bilipschitz embeddings of metric spaces into Banach spaces with the RNP, see [4,5,9]. At the seminar "Nonlinear geometry of Banach spaces" (Texas A & M University, August 2009) Bill Johnson suggested the problem of metric characterization of reflexivity and the Radon-Nikodým property [14, Problem 1.1]. Some work on this problem was done in [10,12]. The purpose of this paper is to continue this work. More precisely, we are going to characterize the RNP using thick families of geodesics defined in the following way.

Definition 1.1. Let u and v be two elements in a metric space (M, d_M) . A uv-geodesic is a distance-preserving map g: $[0, d_M(u, v)] \rightarrow M$ such that g(0) = u and $g(d_M(u, v)) = v$ (where $[0, d_M(u, v)]$ is an interval of the real line with the distance inherited from \mathbb{R}). A family *T* of *uv*-geodesics is called *thick* if there is $\alpha > 0$ such that for every $g \in T$ and for any finite collection of points r_1, \ldots, r_n in the image of g, there is another uv-geodesic $\tilde{g} \in T$ satisfying the following conditions.

• The image of \tilde{g} also contains r_1, \ldots, r_n .

- Therefore there are $t_1, \ldots, t_n \in [0, d_M(u, v)]$ such that $r_i = g(t_i) = \tilde{g}(t_i)$. There are two sequences $\{q_i\}_{i=1}^m$ and $\{s_i\}_{i=1}^{m+1}$ in $[0, d_M(u, v)]$ which are listed in a non-decreasing order and satisfy the conditions:
 - 1. $\{q_i\}_{i=1}^m$ contains $\{t_i\}_{i=1}^n$
 - 2. Points s_1, \ldots, s_{m+1} satisfy

 $0 \leq s_1 \leq q_1 \leq s_2 \leq q_2 \leq \cdots \leq s_m \leq q_m \leq s_{m+1} \leq d_M(u, v).$

CrossMark

E-mail address: ostrovsm@stjohns.edu.

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.07.067

3. $g(q_i) = \widetilde{g}(q_i)$ for all i = 1, ..., m, and

$$\sum_{i=1}^{m+1} d_M(g(s_i), \widetilde{g}(s_i)) \geq \alpha.$$

The main purpose of this paper is to prove the following result.

Theorem 1.2. For each non- RNP Banach space X there exists a metric space M_X containing a thick family T_X of geodesics which admits a bilipschitz embedding into X.

This result complements the following two results of [12].

Theorem 1.3 ([12]). If a Banach space X admits a bilipschitz embedding of a thick family of geodesics, then X does not have the RNP.

Theorem 1.4 ([12]). For each thick family T of geodesics there exists a Banach space X which does not have the RNP and does not admit a bilipschitz embedding of T into X.

Corollary 1.5 (*Of* Theorems 1.2 and 1.3). A Banach space X does not have the RNP if and only if it admits a bilipschitz embedding of some thick family of geodesics.

Remark 1.6. Theorem 1.4 shows that the metric space M_X and the family T_X in Theorem 1.2 should depend on the space X.

We use some standard definitions of the Banach space theory and the theory of metric embeddings, see [11].

2. Proof of the main result

Proof of Theorem 1.2. We use the characterization of the RNP in terms of bushes (see [1, bottom of page 111] or [3, Theorem 2.3.6]).

Definition 2.1. Let *Z* be a Banach space and let $\varepsilon > 0$. A set of vectors $\{z_{n,j}\}_{n=0,j=1}^{\infty}$ in *Z* is called an ε -bush if for every $n \ge 1$ there is a partition $\{A_k^n\}_{k=1}^{m_n-1}$ of $\{1, \ldots, m_n\}$ such that

$$\|z_{n,j} - z_{n-1,k}\| \ge \varepsilon \tag{1}$$

for every $j \in A_k^n$, and

$$z_{n-1,k} = \sum_{j \in A_k^n} \lambda_{n,j} z_{n,j} \tag{2}$$

for some $\lambda_{n,j} \ge 0$, $\sum_{j \in A_{\nu}^{n}} \lambda_{n,j} = 1$.

The mentioned characterization of the RNP is as follows.

Theorem 2.2 ([1,3]). A Banach space Z does not have the RNP if and only if it contains a bounded ε -bush for some $\varepsilon > 0$.

In this theorem and below we may and shall assume that $m_0 = 1$.

It is easy to see that the direct sum of two Banach spaces with the RNP has the RNP. Because of this a subspace of codimension 1 in a non-RNP Banach space also does not have the RNP. Let $x^* \in X^*$, $||x^*|| = 1$ be a functional which attains its norm on $x \in X$, ||x|| = 1. By Theorem 2.2, we can find a bounded ε -bush in ker x^* . Shifting this bush by x we get a bush $\{x_{n,j}\}_{n=0,j=1}^{\infty}$ satisfying the condition $x^*(x_{n,j}) = 1$ for all n and j. Consider the closure of the convex hull of the set $B_X \cup \{\pm x_{n,j}\}_{n=0,j=1}^{\infty}$, where B_X is the closed unit ball of X. It is clear that this set is the unit ball of X in an equivalent norm and that in this new norm

$$\|x_{n,j}\| = 1 \quad \text{for all } n \text{ and } j. \tag{3}$$

Since the property of X which we are going to establish is clearly an isomorphic invariant, it suffices to consider the case where (3) is satisfied.

We are going to use this ε -bush to construct a thick family of geodesics in X joining 0 and $x_{0,1}$. First we construct a subset of the desired set of geodesics; this subset will be constructed as the set of limits of certain broken lines in X joining 0 and $x_{0,1}$. The constructed broken lines are also geodesics (but they do not necessarily belong to the family T_X). The mentioned above broken lines will be constructed using representations of the form $x_{0,1} = \sum_{i=1}^{m} z_i$, where z_i are

The mentioned above broken lines will be constructed using representations of the form $x_{0,1} = \sum_{i=1}^{m} z_i$, where z_i are such that $||x_{0,1}|| = \sum_{i=1}^{m} ||z_i||$. The broken line represented by such finite sequence z_1, \ldots, z_m is obtained by letting $z_0 = 0$

Download English Version:

https://daneshyari.com/en/article/4616435

Download Persian Version:

https://daneshyari.com/article/4616435

Daneshyari.com