

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa



Restrictions of an invertible chaotic operator to its invariant subspaces

Kit C. Chan^{a,*}, Gokul R. Kadel^b

^a Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, United States ^b Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, United States

ARTICLE INFO

Article history: Received 4 January 2013 Available online 7 August 2013 Submitted by R.M. Aron

Keywords: Chaotic extension Left invertibility Right invertibility Fredholm operators Invariant subspace

1. Introduction

ABSTRACT

Let *M* be a closed subspace of a separable, infinite dimensional Hilbert space *H* with $\dim(H/M) = \infty$. We show that a bounded linear operator $A : M \to M$ has an invertible chaotic extension $T : H \to H$ if and only if *A* is bounded below. Motivated by our result, we further show that $A : M \to M$ has a chaotic Fredholm extension $T : H \to H$ if and only if *A* is left semi-Fredholm.

© 2013 Elsevier Inc. All rights reserved.

A bounded linear operator $T : H \to H$ on a separable, infinite dimensional Hilbert space H is said to be *hypercyclic* if there is a vector h in H such that its orbit orb $(T, h) := \{h, Th, T^2h, \ldots\}$ is dense in H. Such a vector h is called a *hypercyclic* vector for T. While the orbit of a hypercyclic vector goes everywhere in the Hilbert space, there may be other vectors whose orbits are indeed finite. Such a vector is called a periodic point. More precisely, we say a vector h in H is a *periodic point* for T if $T^n h = h$ for some positive integer n depending on h. The operator T is said to be *chaotic* if T is hypercyclic and has a dense set of periodic points.

A closed subspace M of H is said to be an *invariant subspace* for T if $TM \subset M$. In the present paper, we study the prescribed behavior of a chaotic or hypercyclic operator T on its invariant subspace M. To facilitate a deeper discussion, we introduce the following definition for a bounded linear operator $A : M \to M$ on a closed subspace M of H. A bounded linear operator $T : H \to H$ is said to be a *hypercyclic extension* of A, if T is hypercyclic and $T|_M = A$. If in addition, the set of periodic points of T is dense in H, then T is said to be a *chaotic extension* of A.

Grivaux [7, Prop 1] and Chan and Turcu [4, Theorem 2] showed that if *M* has infinite codimension in *H*, then any operator $A: M \to M$ has a chaotic extension $T: H \to H$. They proved the result using different techniques but the extension *T* they obtained is the same. To be more precise, Grivaux [7] used the analytic function theory techniques to construct an extension *T* which satisfies the hypothesis of a hypercyclicity result of Godefroy and Shapiro [6]: if $H_+(T) = \text{span}\{\ker(T - \lambda I) : |\lambda| > 1\}$, and $H_-(T) = \text{span}\{\ker(T - \lambda I) : |\lambda| < 1\}$ are dense subspaces of *H*, then *T* is hypercyclic.

Chan and Turcu [4] used elementary Hilbert space techniques to show their extension *T* has an additional property that it satisfies the Hypercyclicity Criterion in the strongest form as stated in Theorem 1. However, an operator *T* constructed using the above result involving $H_+(T)$ and $H_-(T)$ is not guaranteed to have that property.

* Corresponding author. *E-mail addresses*: kchan@bgsu.edu (K.C. Chan), gkadel@cameron.edu (G.R. Kadel).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jmaa.2013.07.072

As an important part of the Hypercyclicity Criterion, Chan and Turcu's result provides us with a chaotic extension T which is right invertible by its design but it must have a nontrivial kernel (see [4, p. 417]). Thus their extension T is never invertible regardless of what further assumption we make on the operator A. This naturally leads to a question whether we can construct an invertible chaotic extension $T : H \rightarrow H$, particularly when A itself is invertible. In that regard, we observe that if T has a left inverse S, then SA = Id on M and hence A is bounded below. In Section 2, we show that the converse also holds true. That is, if A is bounded below on M, we construct an invertible chaotic extension T for A; see Corollary 4. To show that, we first construct a right invertible chaotic extension T for an operator A having a closed range so that ker T = ker A; see Theorem 2. Since it is important for A and T to have the same kernel, our techniques are different from those in [4,7].

Motivated by our above results on invertibility and chaotic extension, we further study in Section 3 the invertibility of the operator in the Calkin algebra, or the Fredholm operators. Specifically, we show that $A : M \to M$ has a chaotic Fredholm extension $T : H \to H$ if and only if A is left semi-Fredholm. Finally in Section 4, we show that the right invertible chaotic extension $T : H \to H$ in Theorem 2 can be constructed to have a hypercyclic subspace.

2. Invertibility of a chaotic extension

The Hypercyclicity Criterion plays a key role in our main theorem. Kitai [8] in 1982 gave the first and simplest version of the Criterion. Later in 1987, Gethner and Shapiro [5] rediscovered the Criterion in much greater generality. Since then hypercyclicity has been attracting a lot of attention as a hot research area. We exhibit in Theorem 2 a chaotic extension that satisfies the Criterion in the strongest possible sense. We now state version of the Criterion here for the sake of completeness.

Theorem 1 (*Kitai* [8]; *Gethner and Shapiro* [5]). A bounded linear operator $T : H \to H$ is hypercyclic if there is a bounded linear operator $S : H \to H$ such that TS = identity, and if there is a dense subset D of H such that $T^n x \to 0$, and $S^n x \to 0$ for each vector x in D.

We are now ready to state and prove the main result of the present paper. We first remark that Chan and Turcu [4, Prop 1] showed that no bounded linear operator $A : M \to M$ on a nontrivial closed subspace M of H with dim $(H/M) < \infty$ can have a hypercyclic extension T to H. Hence, we have to assume dim $(H/M) = \infty$ in order to construct a hypercyclic extension T on H.

Theorem 2. Let *H* be a separable, infinite dimensional Hilbert space, and *M* be a closed subspace of *H* with dim $(H/M) = \infty$. Every bounded linear operator $A : M \to M$ with a closed range has a right invertible chaotic extension $T : H \to H$ with ker $A = \ker T$ that satisfies the hypothesis of Theorem 1.

Proof. First we note that ranA is a closed subspace of M and so M is an orthogonal sum $M = \operatorname{ranA} \oplus (\operatorname{ranA})^{\perp}$. In the rest of the proof, we use the symbol \oplus to denote an orthogonal sum of closed subspaces or an orthogonal sum of vectors. Since M has infinite codimension in H, we can rename M as M_0 and write H as an orthogonal sum $\bigoplus_{j \in \mathbb{Z}} M_j$ where for each $j \ge 0$, M_j is isomorphic to M, and furthermore for each j < 0, M_j is isomorphic to ranA. Hence for each $j \in \mathbb{Z}$, we can write $M_j = M'_j \oplus M''_j$ where each M'_j is isomorphic to ranA, and if $j \ge 0$ then M''_j is isomorphic to $(\operatorname{ranA})^{\perp}$, and if j < 0 then $M''_j = \{0\}$. Thus, we can write H as the sum $\bigoplus_{j \in \mathbb{Z}} (M'_j \oplus M''_j)$.

Each vector *h* in *H* is written as

$$h = (h_j) = \left(\ldots, h_{-2}, h_{-1}, \underline{h_0}, h_1, h_2, \ldots\right),$$

where each $h_j \in M_j$ and the symbol "____" indicates the zeroth component; that is, the vector in M_0 . Since $M_j = M'_j \oplus M''_j$ for each $j \in \mathbb{Z}$, and indeed $M''_i = \{0\}$ whenever j < 0, we can re-write h as

$$h = (h_j) = (\ldots, h'_{-2}, h'_{-1}, \underline{h_0}, h_1, h_2, \ldots),$$

where $h'_i \in M'_i = M_j$ for each j < 0.

Since $A : M \to M$ is bounded linear, the restriction map $A|_{(\ker A)^{\perp}} : (\ker A)^{\perp} \to \operatorname{ran} A$ is invertible, that is, there exists a bounded linear operator $B : \operatorname{ran} A \to (\ker A)^{\perp}$ such that AB is the identity on ranA.

Let $\alpha > \max\{1, \|A\|, \|B\|\}$. By additively decomposing each vector h_j in M_j as the vector $h'_j \oplus h''_j$ in $M'_j \oplus M''_j$, and by suppressing the symbols for the isomorphisms between M'_i and M'_j for all integers i, j, and also the isomorphisms between M''_i and M''_j for all nonnegative integers i, j, we can define $T : H \to H$ by

$$Th = \left(\left(Th \right)_j \right) = \left(\dots, \frac{h'_{-2}}{\alpha}, \frac{h'_{-1}}{\alpha}, \alpha h'_1, \underbrace{Ah_0 + \alpha h_1}_{}, \alpha h_2, \alpha h_3, \alpha h_4 \dots \right).$$

Download English Version:

https://daneshyari.com/en/article/4616442

Download Persian Version:

https://daneshyari.com/article/4616442

Daneshyari.com