

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Restriction of the Fourier transform to some complex curves

Jong-Guk Bak a,*, Seheon Ham b,*

- ^a Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- ^b Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic of Korea

ARTICLE INFO

Article history: Received 20 March 2013 Available online 11 August 2013 Submitted by R.H. Torres

Keywords: Fourier transforms of measures Complex curves Fourier restriction problem Affine arclength measure

ABSTRACT

The purpose of this paper is to prove a Fourier restriction estimate for certain 2-dimensional surfaces in \mathbb{R}^{2d} , $d \geq 3$. These surfaces are defined by a complex curve $\gamma(z)$ of simple type, which is given by a mapping of the form

$$z \mapsto \gamma(z) = (z, z^2, \dots, z^{d-1}, \phi(z))$$

where $\phi(z)$ is an analytic function on a domain $\Omega\subset\mathbb{C}$. This is regarded as a real mapping $z=(x,y)\mapsto \gamma(x,y)$ from $\Omega\subset\mathbb{R}^2$ to \mathbb{R}^{2d} .

Our results cover the case $\phi(z) = z^N$ for any nonnegative integer N, in all dimensions $d \ge 3$. The main result is a uniform estimate, valid when d = 3, where $\phi(z)$ may be taken to be an arbitrary polynomial of degree at most N. It is uniform in the sense that the operator norm is independent of the coefficients of the polynomial. These results are analogues of the uniform restricted strong type estimates in [5], valid for polynomial curves of simple type and some other classes of curves in \mathbb{R}^d , $d \ge 3$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let us consider a 'complex curve' of simple type in \mathbb{C}^d , $d \geq 2$. By this we mean a mapping of the following form:

$$z \mapsto \gamma(z) = (z, z^2, \dots, z^{d-1}, \phi(z)), \quad z \in \Omega$$
(1.1)

where $\phi(z)$ is an analytic function on a domain $\Omega \subset \mathbb{C}$. We will regard this mapping as a 2-dimensional surface in \mathbb{R}^{2d} , given by the real mapping

$$z = (x, y) \mapsto \gamma(x, y) = (x, y, x^2 - y^2, 2xy, \dots, \operatorname{Re}(\phi(z)), \operatorname{Im}(\phi(z))) \in \mathbb{R}^6.$$

In what follows we use $\mathbb C$ and $\mathbb R^2$ interchangeably whenever there is no danger of confusion.

Let us consider a Fourier restriction estimate of the following form:

$$\left(\int_{\mathbb{R}^2} |\widehat{f}(\gamma(z))|^q w(z) \, d\mu(z)\right)^{1/q} \le C_p \, \|f\|_{L^p(\mathbb{R}^{2d})} \tag{1.2}$$

where $\widehat{f}(\xi)$ denotes the Fourier transform of $f \in L^p(\mathbb{R}^{2d})$, and the weight function w(z) is given by

$$w(z) = |\tau(z)|^{4/(d^2+d)}, \quad \text{where } \tau(z) = \det(\gamma'(z), \dots, \gamma^{(d)}(z)).$$
 (1.3)

Also, $d\mu$ denotes the surface measure given by $d\mu(z)=d\mu(\gamma(z))=dxdy$ for z=x+iy. Here, $\widehat{f}(\gamma(z))$ stands for $\widehat{f}(\gamma(x,y))$.

E-mail addresses: bak@postech.ac.kr (J.-G. Bak), hamsh@snu.ac.kr (S. Ham).

^{*} Corresponding author.

For γ given by (1.1), we have $\tau(z) = c_d \phi^{(d)}(z)$ with $c_d = 2! \cdots (d-1)!$. The expression $w(z) d\mu(z) = |\tau(z)|^{4/(d^2+d)} d\mu(z)$ is an analogue of the affine arclength measure for real curves (cf. [18,19,3]). See Section 2 for the optimality of this choice of measure

When d = 2, Oberlin [23] proved the following.

Theorem 1.1 ([23]; Theorem 4 and Example 3). Let $\gamma(z) = (z, \phi(z))$, where $\phi(z)$ is an analytic function on an open set $D \subset \mathbb{C}$. Suppose that $\phi'(z)$ and the map $(z_1, z_2) \mapsto (z_1 - z_2, \phi(z_1) - \phi(z_2))$ both have generic multiplicities at most N on D and D^2 , respectively. Then there is a constant $C_p(N) < \infty$ so that for all $f \in L^p(\mathbb{R}^4)$,

$$\left(\int_{D} |\widehat{f}(\gamma(z))|^{q} |\phi''(z)|^{2/3} d\mu(z)\right)^{1/q} \le C_{p}(N) \|f\|_{L^{p}(\mathbb{R}^{4})}$$
(1.4)

whenever 1/p + 1/(3q) = 1, $1 \le p < 4/3$.

See [10] for a related result for some 2-dimensional surfaces in \mathbb{R}^4 which are not necessarily given by holomorphic functions, but which satisfy a certain nondegeneracy condition. (See also [17] for an analogous result for some k-dimensional surfaces in \mathbb{R}^d , where d=2k.)

In this paper we obtain some positive results in higher dimensions. First let us assume that $\gamma(z)$ is in the form (1.1), where $\phi(z) = z^N, z \in \mathbb{C}$, for an integer N > 0.

Theorem 1.2. Given integers $d \ge 3$ and $N \ge 0$, let $\gamma(z)$ be as in (1.1), with $\phi(z) = z^N$. Then there is a constant $C(N) < \infty$ so that for all $f \in L^{p_d,1}(\mathbb{R}^{2d})$,

$$\left(\int_{\mathbb{R}^2} |\widehat{f}(\gamma(z))|^{p_d} w(z) \, d\mu(z)\right)^{1/p_d} \le C(N) \|f\|_{L^{p_d,1}(\mathbb{R}^{2d})} \tag{1.5}$$

where $w(z) = |\phi^{(d)}(z)|^{4/(d^2+d)}$ and $p_d = (d^2+d+2)/(d^2+d)$. Moreover, there is a constant $C_n(N) < \infty$ such that

$$\left(\int_{\mathbb{R}^2} |\widehat{f}(\gamma(z))|^q w(z) \, d\mu(z)\right)^{1/q} \le C_p(N) \|f\|_{L^p(\mathbb{R}^{2d})} \tag{1.6}$$

whenever $1/p + 2/[(d^2 + d)q] = 1$, $1 \le p < p_d$.

These estimates (as well as those in the next theorem) are expected to be optimal on the Lorentz scale of exponents, in view of the analogous results in the real case (see [3] and Theorems 1.4 and 1.5). However, this seems to be quite difficult to show in the present context, where the (real) dimension of the surface is k=2. For instance, it is unknown if the estimate (1.15), which is dual to (1.6), fails for $q \le q_d$, $d \ge 3$, even when f is a bump function and we are in the nondegenerate case (with w=1). This is related to the unsolved problem of determining the convergence exponent for the multi-dimensional Tarry's problem. In this connection, compare the statements of Theorem 1.3 (for k=1) and Theorem 1.9 (for $k \ge 2$) in [1]. Notice that no information is available for the divergence of the integral in Theorem 1.9 (in [1]), while Theorem 1.3 (in [1]) gives the complete answer in the 1-dimensional case.

We show the sharpness of the condition $1/p + 2/[(d^2 + d)q] = 1$ at the end of this section (see under the heading "A homogeneity argument"), and we also prove in Section 2 the optimality of the weight function w(z), given after (1.5).

When d=3, we get a uniform estimate valid for an *arbitrary* polynomial $\phi(z)$ of degree at most N.² This is an exact analogue of Theorem 1.5 for (real) curves, stated below.

Theorem 1.3. For d=3 and $N\geq 0$, let $\gamma(z)=(z,z^2,\phi(z))$, where $\phi(z)$ is an arbitrary polynomial of degree at most N. Then there is a constant $C(N)<\infty$, independent of the coefficients of $\phi(z)$, so that for all $f\in L^{7/6,1}(\mathbb{R}^6)$,

$$\left(\int_{\mathbb{R}^2} |\widehat{f}(\gamma(z))|^{7/6} w(z) \, d\mu(z)\right)^{6/7} \le C(N) \|f\|_{L^{7/6,1}(\mathbb{R}^6)} \tag{1.7}$$

where $w(z) = |\phi'''(z)|^{1/3}$.

Moreover, there is a constant $C_p(N) < \infty$, independent of the coefficients of $\phi(z)$, such that

$$\left(\int_{\mathbb{R}^2} |\widehat{f}(\gamma(z))|^q w(z) d\mu(z)\right)^{1/q} \leq C_p(N) \|f\|_{L^p(\mathbb{R}^6)}$$

whenever 1/p + 1/(6q) = 1, $1 \le p < p_3 = 7/6$.

¹ Recall that $F:D\subset\mathbb{R}^k\to\mathbb{R}^k$ is said to have generic multiplicity N if $\operatorname{card}[F^{-1}(y)]\leq N$ for almost all $y\in\mathbb{R}^k$. Here, $\operatorname{card}[E]$ denotes the cardinality of the set F

² It will be interesting if one can show a version of Theorem 1.3 for higher dimensions ($d \ge 4$) as well as an analogue of Theorem 1.4 for complex curves.

Download English Version:

https://daneshyari.com/en/article/4616450

Download Persian Version:

https://daneshyari.com/article/4616450

Daneshyari.com