Asymptotic formulas associated with psi function with applications

Long Lin

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan Province, People's Republic of China

ARTICLE INFO

Article history:

Received 31 July 2012
Available online 28 March 2013
Submitted by Michael J. Schlosser

Keywords:

Psi function
Euler-Mascheroni constant
Bernoulli numbers and polynomials
Asymptotic formula

Abstract

We prove several asymptotic formulas associated with the psi function, and then apply them to derive the asymptotic formulas for the Euler-Mascheroni constant. Also, we give another proof of an open problem of Chen and Mortici concerning the Euler-Mascheroni constant first proved by S. Yang.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The classical Euler's gamma function may be defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t
$$

Some inequalities and asymptotic formulas for the gamma function can be found (see, for example, $[3,12,11,13,10]$). The logarithmic derivative of $\Gamma(x)$, denoted by $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$, is known as the psi (or digamma) function. The psi function has the following asymptotic expansion (see [9, p. 32]):

$$
\begin{equation*}
\psi(x+t) \sim \ln x-\sum_{n=1}^{\infty} \frac{(-1)^{n} B_{n}(t)}{n x^{n}} \quad \text { as } x \rightarrow \infty \tag{1.1}
\end{equation*}
$$

where $B_{n}(t)$ stands for the Bernoulli polynomials defined by the following generating function:

$$
\begin{equation*}
\frac{x e^{t x}}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n}(t) \frac{x^{n}}{n!} \tag{1.2}
\end{equation*}
$$

Note that the Bernoulli numbers $B_{n}\left(n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, \mathbb{N}:=\{1,2,3, \ldots\}\right)$ are defined by $B_{n}:=B_{n}(0)$ in (1.2). Setting $t=1$ in (1.1) and noting that

$$
B_{n}(0)=(-1)^{n} B_{n}(1)=B_{n} \quad \text { for } n \in \mathbb{N}_{0}
$$

[^0](see [1, p. 805]), we obtain from (1.1) that
\[

$$
\begin{align*}
\psi(x+1) & \sim \ln x-\sum_{n=1}^{\infty} \frac{B_{n}}{n x^{n}} \\
& =\ln x+\frac{1}{2 x}-\frac{1}{12 x^{2}}+\frac{1}{120 x^{4}}-\frac{1}{252 x^{6}}+\frac{1}{240 x^{8}}-\frac{1}{132 x^{10}}+\cdots \quad \text { as } x \rightarrow \infty \tag{1.3}
\end{align*}
$$
\]

By using $e^{x}=\sum_{j=0}^{\infty} \frac{x^{j}}{j!}$, we deduce from (1.3) that

$$
\begin{equation*}
\exp (\psi(x+1)) \sim x+\frac{1}{2}+\frac{1}{24 x}-\frac{1}{48 x^{2}}+\frac{23}{5760 x^{3}}+\frac{17}{3840 x^{4}}-\frac{10099}{2903040 x^{5}}-\frac{2501}{1161216 x^{6}}+\cdots \quad \text { as } x \rightarrow \infty \tag{1.4}
\end{equation*}
$$

The main object of this paper is to give an explicit formula for determining the coefficients in the asymptotic expansion (1.4) (see Section 2), and then apply it to give another proof of an open problem of Chen and Mortici [4] concerning the Euler-Mascheroni constant first proved by S. Yang [15] (see Section 3).

2. Asymptotic expansions associated with psi function

Theorem 2.1. The function $\exp (\psi(x+1))$ has the following asymptotic expansion:

$$
\begin{equation*}
\exp (\psi(x+1)) \sim x\left(1+\sum_{j=1}^{\infty} \frac{p_{j}}{x^{j}}\right) \quad \text { as } x \rightarrow \infty \tag{2.1}
\end{equation*}
$$

with the coefficients $p_{j}(f o r j \in \mathbb{N})$ given by

$$
\begin{equation*}
p_{j}=\sum_{k_{1}+2 k_{2}+\cdots+j k_{j}=j} \frac{(-1)^{k_{1}+k_{2}+\cdots+k_{j}}}{k_{1}!k_{2}!\cdots k_{j}!}\left(\frac{B_{1}}{1}\right)^{k_{1}}\left(\frac{B_{2}}{2}\right)^{k_{2}} \cdots\left(\frac{B_{j}}{j}\right)^{k_{j}}, \tag{2.2}
\end{equation*}
$$

where B_{j} are the Bernoulli numbers, summed over all nonnegative integers k_{j} satisfying the equation

$$
k_{1}+2 k_{2}+\cdots+j k_{j}=j
$$

Proof. To determine $p_{j}($ for $j \in \mathbb{N})$ in (2.1), we first express (2.1) as follows:

$$
\begin{equation*}
\psi(x+1)-\ln x=\ln \left(1+\sum_{j=1}^{m} \frac{p_{j}}{x^{j}}\right)+O\left(x^{-m-1}\right) \quad \text { as } x \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

By using the fundamental theorem of algebra, we see that there exist unique complex numbers $\lambda_{1}, \ldots, \lambda_{m}$ such that

$$
\begin{equation*}
1+\frac{p_{1}}{x}+\cdots+\frac{p_{m}}{x^{m}}=\left(1+\frac{\lambda_{1}}{x}\right) \cdots\left(1+\frac{\lambda_{m}}{x}\right) . \tag{2.4}
\end{equation*}
$$

By using the following series expansion:

$$
\ln \left(1+\frac{z}{x}\right)=\sum_{j=1}^{q} \frac{(-1)^{j-1} z^{j}}{j x^{j}}+O\left(x^{-q-1}\right) \quad \text { for }|z|<|x| \text { and } x \rightarrow \infty
$$

we obtain

$$
\begin{equation*}
\ln \left(1+\frac{p_{1}}{x}+\cdots+\frac{p_{m}}{x^{m}}\right)=\sum_{j=1}^{m} \frac{(-1)^{j-1} \sigma_{j}}{j x^{j}}+O\left(x^{-m-1}\right) \quad \text { as } x \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where

$$
\sigma_{j}=\lambda_{1}^{j}+\cdots+\lambda_{m}^{j} \quad \text { for } j=1, \ldots, m
$$

We then find from (1.3) and (2.5) that

$$
\begin{equation*}
\sigma_{j}=(-1)^{j} B_{j} \quad \text { for } j=1, \ldots, m \tag{2.6}
\end{equation*}
$$

https://daneshyari.com/en/article/4616571

Download Persian Version:

https://daneshyari.com/article/4616571

Daneshyari.com

[^0]: E-mail address: linlong454000@163.com.
 0022-247X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jmaa.2013.03.026

