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a b s t r a c t

In this note, we prove, for instance, that the automorphism group of a rational manifold
X which is obtained from Pk(C) by a finite sequence of blow-ups along smooth centers of
dimension at most r with k > 2r + 2 has finite image in GL(H∗(X, Z)). In particular, every
holomorphic automorphism f : X → X has zero topological entropy.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Dimensions of indeterminacy loci

Recall that a rational map admitting a rational inverse is called birational. Birational transformations are, in general, not
defined everywhere. The domain of definition of a birational map f :M → N is the largest Zariski-open subset on which f is
locally a well defined morphism. Its complement is the indeterminacy set Ind(f ); its codimension is always larger than, or
equal to, 2. The following statement shows that the dimension of Ind(f ) and Ind(f −1) cannot be too small simultaneously
unless f is an automorphism. This result is inspired by a nice argument of Nessim Sibony concerning the degrees of regular
automorphisms of the complex affine spaceCk (see [13]). Itmay be considered as an extension of a theoremdue toMatsusaka
and Mumford (see [10], and [7, Exercise 5.6]).

Theorem 1.1. Let k be a field. Let M be a smooth connected projective variety defined over k. Let f be a birational transformation
of M. Assume that the following two properties are satisfied.

(i) the Picard number of M is equal to 1;
(ii) the indeterminacy sets of f and its inverse satisfy

dim(Ind(f )) + dim(Ind(f −1)) < dim(M) − 2.

Then f is an automorphism of M.

Moreover, Aut(M) is an algebraic group because the Picard number ofM is equal to 1. As explained below, this statement
provides a direct proof of the following corollary, which was our initial motivation.
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Corollary 1.2. Let M0 be a smooth, connected, projective variety with Picard number 1. Let m be a positive integer, and
πi:Mi+1 → Mi, i = 0, . . . ,m − 1, be a sequence of blow-ups of smooth irreducible subvarieties of dimension at most r. If
dim(M0) > 2r + 2 then the number of connected components of Aut(Mm) is finite; moreover, the projection π :Mm → M0
conjugates Aut(Mm) to a subgroup of the algebraic group Aut(M0).

For instance, if M0 is the projective space (respectively a cubic hypersurface of P4
k) and if one modifies M0 by a finite

sequence of blow-ups of points, then Aut(M0) is isomorphic to a linear algebraic subgroup of PGL4(k) (respectively is finite).
This provides a sharp (and strong) answer to a question of Eric Bedford. In Section 3, we provide a second, simpler proof of
this last statement.

Remark 1.3. The initial question of E. Bedford concerned the existence of automorphisms of compact Kähler manifolds
with positive topological entropy in dimension > 2. This link with dynamical systems is described, for instance, in [4].
If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from
the projective plane P2(C), a torus, a K3 surface or an Enriques surface, by a finite sequence of blow-ups (see [5,6,12]).
Examples of automorphismswith positive entropy are easily constructed on tori, K3 surfaces, or Enriques surfaces. Examples
of automorphisms with positive entropy on rational surfaces are given in [2,3,11]; these examples are obtained from
birational transformations f of the plane by a finite sequence of blow-ups that resolves all indeterminacies of f and its
iterates simultaneously. These results suggest looking for birational transformations of Pn

C, n ≥ 3, that can be lifted to
automorphisms with a nice dynamical behavior after a finite sequence of blow-ups; the above result shows that at least one
center of the blow-ups must have dimension ≥ n/2 − 1.

Remark 1.4. Recently, Tuyen Truong obtained results which are similar to Corollary 1.2, but with hypothesis on the Hodge
structure and nef classes ofM0 that replace our strong hypothesis on the Picard number (see [14,15]).

2. Dimensions of Indeterminacy loci

In this section, we prove Theorem 1.1 under a slightly more general assumption. Indeed, we replace assumption (i) with
the following assumption

(i’) There exists an ample line bundle L such that f ∗(L) ∼= L⊗d for some d > 1.

This property is implied by (i). Indeed, if M has Picard number 1, the torsion-free part of the Néron–Severi group of M is
isomorphic to Z, and is generated by the class [H] of an ample divisor H . Thus, [f ∗H] must be a multiple of [H].

In what follows, we assume that f satisfies property (i’) and property (ii). ReplacingH by a large enoughmultiple, wemay
and do assume that H is very ample. Thus, the complete linear system |H| provides an embedding ofM into some projective
space Pn

k, andwe identifyM with its image in Pn
k. With such a convention,members of |H| correspond to hyperplane sections

ofM .

2.1. Degrees

Denote by k the dimension ofM , and by deg(M) its degree, i.e. the number of intersections ofM with a generic subspace
of dimension n − k.

If H1, . . . ,Hk are hyperplane sections of M , and if f ∗(H1) denotes the total transform of H1 under the action of f , one
defines the degree of f by the following intersection of divisors ofM

deg(f ) =
1

deg(M)
f ∗(H1) · H2 · · ·Hk.

Since M has Picard number 1, we know that divisor class [f ∗(H1)] is proportional to [H]. Our definition of deg(f ) implies
that f ∗

[H1] = deg(f )[H1]. As a consequence,

f ∗(H1) · f ∗(H2) · · · f ∗(Hj) · Hj+1 · · ·Hk = deg(f )j deg(M)

for all 0 ≤ j ≤ k.

2.2. Degree bounds

Assume that the sum of the dimension of Ind(f ) and of Ind(f −1) is at most k − 3. Then there exist at least two integers
l ≥ 1 such that

dim(Ind(f )) ≤ k − l − 1;
dim(Ind(f −1)) ≤ l − 1.

Let H1, . . . ,Hl and H ′

1, . . . ,H
′

k−l be generic hyperplane sections ofM; by Bertini’s theorem,



Download English Version:

https://daneshyari.com/en/article/4616586

Download Persian Version:

https://daneshyari.com/article/4616586

Daneshyari.com

https://daneshyari.com/en/article/4616586
https://daneshyari.com/article/4616586
https://daneshyari.com

