

Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/jmaa)

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Subhomogeneity and subadditivity of the L^p-norm like functionals

Janusz Matkowski

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, PL-65-516 Zielona Góra, Poland

a r t i c l e i n f o

Article history: Received 9 June 2012 Available online 15 March 2013 Submitted by M. Laczkovich

Keywords: Subhomogeneity Subadditivity Convex function Wright-convex function Geometrical convex function

a b s t r a c t

For a measure space (Ω, Σ, μ) denote by $S = S(\Omega, \Sigma, \mu)$ the set of all μ -integrable simple functions $x : \Omega \to \mathbb{R}$. For a bijection $\varphi : (0, \infty) \to (0, \infty)$ we consider the functional $P_{\omega}: S \rightarrow [0, \infty),$

$$
\mathbf{P}_{\varphi}(x) := \varphi^{-1}\left(\int_{\Omega(x)} \varphi \circ |x| \, d\mu\right),\,
$$

where $\Omega(x)$ is the support of $x \in S$. One of the results says that if the measure μ has values in (0, 1) and in (1, ∞), the function φ is monotonic and **P**_{φ} satisfies the inequality

$$
\mathbf{P}_{\varphi}(t x) \leq t \mathbf{P}_{\varphi}(x), \quad t > 1, x \in S,
$$

then φ is a power function. Some characterizations of the functions φ in two remaining cases when either $\mu(\Sigma) \cap (1,\infty) = \emptyset$ or $\mu(\Sigma) \cap (0,1) = \emptyset$ are given. The subadditivity of **P**ϕ, i.e. a generalization of the Minkowski inequality, is also considered.

© 2013 Elsevier Inc. All rights reserved.

0. Introduction

For a measure space (Ω, Σ, μ) denote by $S = S(\Omega, \Sigma, \mu)$ the real linear space of all μ -integrable simple functions $x: \Omega \to \mathbb{R}$. For an arbitrary bijection $\varphi : (0, \infty) \to (0, \infty)$ we define the functional $P_\varphi : S \to [0, \infty)$ by the formula

$$
\mathbf{P}_{\varphi}(x) := \varphi^{-1}\left(\int_{\Omega(x)} \varphi \circ |x| \, d\mu\right),\,
$$

where $\Omega(x)$ is the support of $x \in S$ such that $\mu(\Omega(x)) > 0$; if $\mu(\Omega(x)) = 0$ we put $P_\varphi(x) := 0$. If $\varphi(t) = \varphi(1)t^p$ for some $p \geq 1$ then P_{φ} is the L^p -norm.

Assume that (Ω, Σ, μ) is nontrivial. Then, under a weak regularity condition on φ , the functional P_φ is (positively) *homogeneous*, that is

 ${\bf P}_{\varphi}(t x) = t {\bf P}_{\varphi}(x), \quad t > 0, \ x \in S,$

if, and only if, φ is a power function, i.e. φ (*r*) = φ (1) *r*^p for some real $p \neq 0$ [\[4\]](#page--1-0).

In the present paper we examine conditions under which P_φ satisfies the inequality

$$
\mathbf{P}_{\varphi}(tx) \leq t \mathbf{P}_{\varphi}(x), \quad t > 1, \ x \in S,
$$

that is, when P_φ is *subhomogeneous* (cf. [\[18](#page--1-1)[,7\]](#page--1-2)). The following result is proved in Section [2](#page--1-3) [\(Theorem 2\)](#page--1-4). If there are *A*, $B \in \Sigma$ such that

$$
0 < \mu(A) < 1 < \mu(B) < \infty,\tag{1}
$$

E-mail address: [J.Matkowski@wmie.uz.zgora.pl.](mailto:J.Matkowski@wmie.uz.zgora.pl)

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.jmaa.2013.03.005>

and φ is monotonic, then P_{φ} is *subhomogeneous* if, and only if, φ is a power function, that is, for some $p \in \mathbb{R}$, $p \neq 0$,

$$
\mathbf{P}_{\varphi}(x) = \left(\int_{\Omega(x)} |x|^p \, d\mu\right)^{1/p}, \quad x \in S;
$$

in particular, P_{φ} is homogeneous.

Thus, under the monotonicity condition on φ , the subhomogeneous but not homogeneous functionals **P**_{φ} may exist only if the underlying measure space (Ω , Σ , μ) satisfies one of the following two conditions

(I): for any set $A \in \Sigma$, either $\mu(A) \leq 1$ or $\mu(A) = \infty$;

(II): for any set $A \in \Sigma$, either $\mu(A) = 0$ or $\mu(A) > 1$.

Any probability measure space is of type (I), and the counting measure space is of type (II).

For the measure spaces of type (I), in Section [3,](#page--1-5) we prove that if φ is increasing, and its right (left) derivative is geometrically concave, or φ is decreasing and its right (left) derivative is geometrically convex, then P_φ is subhomogeneous [\(Theorem 3\)](#page--1-6), and, if the range of the measure (or the union of applied measures) is enough reach, then the converse implication holds true [\(Theorem 4\)](#page--1-7).

For the measure spaces of type (II), in Section [4,](#page--1-8) we show that if φ is increasing and geometrically convex, or φ is decreasing and geometrically concave, then **P**ϕ is subhomogeneous [\(Theorem 5\)](#page--1-9) and, if the range of the measure (or the union of applied measures) is enough reach, then the converse implication holds true [\(Theorem 6\)](#page--1-10).

In Section [5](#page--1-11) we give sufficient and necessary and sufficient conditions for the subhomogeneity and subadditivity of the functional **P**_ω.

The suitable properties of superhomogeneity and superadditivity of P_φ can be obtained by easy modifications of the obtained results (Final Remark).

Some, important for this paper, auxiliary results are presented in Section [1.](#page-1-0) In particular we show that if in a (nontrivial) measure space (Ω, Σ, μ) there is a set $A \in \Sigma$ such that $\mu(A) = 1$ and P_{φ} is subadditive in *S*, i.e.

 ${\bf P}_{\omega}(x + y) < {\bf P}_{\omega}(x) + {\bf P}_{\omega}(y)$, $x, y \in S$,

then φ must be increasing and convex [\(Theorem 1\)](#page--1-12).

Let us mention that in [\[5\]](#page--1-13) (cf. also [\[10–12\]](#page--1-14)), under assumption [\(1\)](#page-0-0) on the measure space, the converse of the Minkowski inequality theorem is proved.

1. Auxiliary results

Let $I \subset (0,\infty)$ be an interval. A function $f: I \to (0,\infty)$ is said to be *Jensen geometrically convex* (*Jensen geometrically concave*) if *f* (*v*, ∞) be an interval. A function *f* : *i* → (v, ∞) is said to be *jensen geometrically convex* (*jensen geometrically concave*) if *f* (\sqrt{xy}) $\leq \sqrt{f(x)f(y)}$ for all *x*, *y* ∈ *I*, (the reversed i is satisfied.

A function $f: I \to (0, \infty)$ is said to be *geometrically convex* (*geometrically concave*) if

 $f(x^t y^{1-t}) \le [f(x)]^t [f(y)]^{1-t}, \quad t \in (0, 1), \ x, y \in I,$

(the reversed inequality holds), and *geometrically affine*, if the equality is satisfied [\[7\]](#page--1-2).

Moreover *f* is geometrically affine iff, $f(x) = ax^p$ ($x \in I$) for some $p \in \mathbb{R}$ and $a > 0$.

Of course, a function $f : I \to (0, \infty)$ is (Jensen) geometrically convex iff log of \circ exp is Jensen convex on the interval log (*I*).

As an immediate consequence of the theory of convex functions (Kuczma [\[3\]](#page--1-15)) we hence obtain the following.

Remark 1. Let *f* be Jensen geometrically convex. If *f* is continuous at least at one point, or bounded from above in a neighborhood of a point, or measurable, then *f* is geometrically convex.

For a function $f:I\to\mathbb{R}$ denote by f'_- the left-sided derivative (by f'_+ the right-sided derivative of f) if it exists.

Remark 2. Suppose that *f* is right-sided differentiable in *I*. Then *f* is geometrically convex (geometrically concave) if, and only if, the function

$$
I \ni x \longmapsto \frac{f'_+(x)}{f(x)}x
$$

is increasing (decreasing).

Indeed, *f* is geometrically convex iff log ◦*f* ◦ exp is convex, that is, iff the function

 $f'_+ \circ \exp$ $\frac{+}{f}$ o exp is increasing.

Since exp is increasing, this function is increasing iff the function $I \ni x \longmapsto \frac{f'(x)}{f(x)}x$ is increasing. Of course this remark remains true if we replace f'_{+} by f'_{-} .

Download English Version:

<https://daneshyari.com/en/article/4616622>

Download Persian Version:

<https://daneshyari.com/article/4616622>

[Daneshyari.com](https://daneshyari.com)