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1. Introduction

In the half-plane {s € C : ¢ > 1} the Riemann zeta function is defined by the equivalent expressions
(o]
()= n*=[][a-pH"
n=1 p prime

In the extraordinary memoir of Riemann [7] it is shown that ¢ extends to a meromorphic function on the entire complex
plane with its only singularity being a simple pole at s = 1, and it satisfies the functional equation relating its values at s
and 1 — s. The Riemann hypothesis asserts that every non-real zero of ¢ lies on the critical line

L= {seC:a:;}.
By a self-intersection of ¢ on the critical line we mean an element of the set
{(s1.52) € L7 151 # s and £(s1) = £(52)}.
Our aim in the present paper is to prove that this set is countable.

Theorem 1. The Riemann zeta function has only countably many self-intersections on the critical line.

In other words, the equation ;(% + it) = z has at most one solution t € R for all but countably many z € C. This
complements the fact that {(% + it) = z has at least two solutions t € R for infinitely many z € C, which follows from a
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recent result of Banks and Kang [1, Theorem 1.2]. Moreover, it has been conjectured in [1] that {(% + it) = z has no more
than two solutions t € R for every nonzero z € C; our Theorem 1 makes it clear that there are at most countably many
counterexamples to this conjecture.

There are two main ingredients in the proof of Theorem 1. The first is that the curve f (t) := ¢ (% +it) is locally injective on
R, i.e., for every t € R there is an open real interval containing ¢t on which f is one-to-one; this is Proposition 3 of Section 2.
A result of Levinson and Montgomery [2] guarantees the local injectivity of f around points t for which f(t) # 0, and in
Proposition 3 the local injectivity of f is also established around points t with f(t) = 0.

The second ingredient in the proof of Theorem 1 is the following general result about self-intersections of locally injective
analytic curves.

Theorem 2. Let F be a function which is analytic in a complex neighborhood of the real line R, and suppose that F is locally
injective on R. If the set of self-intersections

{(a,b) eR?:a # band F(a) = F(b)}
is uncountable, then F(R) is a loop in C.

By a loop in C we mean the image of a continuous map L : [y, §] — Csuch thatL(y) = L(§). Since every loop is compact,
Theorem 2 applied with F := f immediately implies Theorem 1 in view of the fact that ¢ is unbounded on the critical line
(see, for example, [8, Theorem 8.12]).

The proof of Theorem 2 in Section 3 relies on intersection properties of analytic curves that were first discovered by
Markushevich [3] and were later extended by Mohon’ko [4,5]; see Proposition 4 of Section 3 and the remarks that follow.

2. Local injectivity
Proposition 3. The curve

1
f =¢ (5 + it) (t eR) (1)

is locally injective on R.

Proof. For every a € R, let X, denote the collection of open intervals { in R that contain a. For any fixed a we must show
that f is one-to-one on an interval { € X,.

In the case that f(a) # 0 we use a result of Levinson and Montgomery (see [2, p. 53]) which states that {(s) = 0
whenever ¢’(s) = 0and o = % As f(a) # 0 we have f’(a) # 0, hence f is locally invertible in a complex neighborhood of
a; in particular, f is one-to-one on some interval 4 € X,.

Let Z denote the set of all zeros of f. If t & Z, we define
1
9(t) == arg f(t) = Jlog¢ (5 + it) (2)

by continuous variation of the argument from 2 to 2 + it to % + it, starting with the value 0, and we denote by N(t) the

number of zeros p = B + iy of £(s) in the rectangle0 < 8 < 1,0 < y < t.Then
() =m-(N({) -1 +g) (t¢2), (3)

where

1 it t
t) .= — |- - —1 t € R);
g(t) arg <4+2>+20gn (t € R);

see, for example, Montgomery and Vaughan [6, Theorem 14.1]. Then

, 1.1 (1 it 1
gW == N | +5)+5logm (teR), (4)

and from the well known relation (I'"'/I")'(s) = Y .o, + s)~2 we see that

> 4n+1
"(t) = —16t t € R).
£ ; ((4n + 1)2 + 4t2)2 ( )

Thus, if ® := 6.2898.. . . is the unique positive root of the function defined by the right-hand side of (4), it is easy to see that
g is strictly decreasing at any t € R with [t| > ©.
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