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a b s t r a c t

A front tracking method is developed for the n × n symmetric Keyfitz–Kranzer system
and convergence of the approximations to the strong generalized entropy solution of the
system as defined by Panov [E.Y. Panov, On the theory of generalized entropy solutions
of the Cauchy problem for a class of nonstrictly hyperbolic systems of conservation laws,
Sb. Math. 191 (2000) 121–150] is proved. We also present numerical examples and
compare the front tracking approximation with the approximations computed by two
finite difference upwind schemes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the Cauchy problem for the n × n symmetric Keyfitz–Kranzer type system,

ut + (uφ(|u|))x = 0, (x, t) ∈ R × (0, T ), (1a)
u(x, 0) = u0(x), x ∈ R, (1b)

where T > 0 is given, u = (u(1), . . . , u(n)) : R × (0, T ) → Rn the unknown and with |u| :=

(u(1))2 + · · · + (u(n))2, u0 =

(u(1)0 , . . . , u
(n)
0 ) ∈ L∞(R,Rn), the initial data, and φ(r) ∈ C1(R+) a scalar function with

rφ(r)
r→0+
−−−→ 0. (2)

System (1) was first considered in [8,11] as a prototype of a nonstrictly hyperbolic system of conservation laws. In physics,
it serves as a model for the elastic string [8], but it also appears in magnetohydrodynamics, where it is for example used
to explain certain features of the solar wind [2]. Related systems of equations appear in chromatography [1,18,15] or in
polymer flooding in porous media [16,14].

We denote the flux function F(u) := uφ(|u|). Its Jacobian matrix A(u) := DF(u) is

A(u) = φ(|u|) 1 +
φ′(|u|)

|u|
u ⊗ u

where 1 denotes the n × n identity matrix. The matrix A(u) is symmetric, therefore its eigenvalues are real and the
corresponding collection of eigenvectors is complete, and system (1) is hyperbolic. The eigenvalues of A(u) are λ1(u) =

φ(|u|)+ φ′(|u|)|u| with multiplicity 1 and λ2(u) = φ(|u|)with multiplicity n − 1. Due to the presence of eigenvalues with
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multiplicity>1, system (1) is not strictly hyperbolic in the sense of Lax [10]. The eigenspaces Ei(u), i = 1, 2, corresponding
to the eigenvalues λi(u), are

E1(u) = span{u}, E2(u) = E1(u)⊥,
and thus we have for vi ∈ Ei with |vi| = 1, denoting r := |u|,

∇λ1(u) · v1 = 2φ′(r)+ φ′′(r)r, ∇λ2(u) · v2 = 0. (3)
So the first characteristic field is either genuinely nonlinear or linearly degenerate (if 2φ′(|u|) + φ′′(|u|)|u| = 0) and the
second characteristic field is always linearly degenerate.

Due to the nonlinearity of Eq. (1a), discontinuities can appear in its solution, no matter how smooth the initial data is.
Therefore one seeks aweak solution to the equation, that is, one requires the differential equation to be satisfied only in the
distributional sense, T

0


R
uψt + uφ(|u|)ψx dx dt +


R
u0(x)ψ(x, 0) dx = 0, ∀ψ ∈ C1,1

0 (R × [0, T )).

It is well known that weak solutions are not necessarily unique and therefore additional admissibility criteria have to be
imposed to select the relevant solution. In the context of conservation laws, this is usually done by restricting to solutions
satisfying in addition an entropy condition, which are therefore called entropy solutions. For system (1), the notion of an
entropy solution was introduced by Freistühler [3,4] and by Panov [13]. It is defined as follows:

Definition 1.1 ([13]). Let φ ∈ C(R+) satisfy (2). A bounded measurable vector-valued function is called a strong generalized
entropy solution if the function r(x, t) = |u(x, t)| is the entropy solution of

rt + (φ(r)r)x = 0, (x, t) ∈ R, (4a)
r(x, 0) = r0(x) = |u0(x)|, x ∈ R, (4b)

that is, (4) is satisfied in theweak sense and in addition it holds for all entropy/entropy flux pairs (p, q), where p(r) is convex
and q(r) defined by q′(r) = (φ(r)r)′p′(r),

p(r)t + q(r)x ≤ 0, in D ′(R × (0, T )),

and u satisfies T

0


R
uψt + uφ(r)ψx dx dt +


R
u0(x)ψ(x, 0) dx = 0, ∀ψ ∈ C1,1

0 (R × [0, T )). (5)

In [13], Panov proved existence and uniqueness of the entropy solution of (1):

Theorem 1.1. There exists a unique strong generalized entropy solution u ∈ L∞(R × (0, T )) of (1) as in Definition 1.1. It can be
obtained as the limit of solutions uϵ in L1loc(R × (0, T )) of the parabolic equation

uϵt + (φ(|uϵ |)uϵ)x = ϵuϵxx
as ϵ → 0.

To prove that there is a unique u satisfying (5), in [12], the author defined v := u/r . Then v satisfies

(Av)t + (Bv)x = 0, in D ′(R × (0, T )), (6a)

v(x, 0) = v0(x) =
u0(x)
r0(x)

, x ∈ R, (6b)

A = A(x, t) = r(x, t), (x, t) ∈ R × (0, T ), (6c)
B = B(x, t) = φ(r(x, t))r(x, t), (x, t) ∈ R × (0, T ). (6d)

For this type of equation, we have the following result:

Theorem 1.2 ([12]). Let v be a solution of

(Av)t + (Bv)x = 0, in D ′(R × (0, T )), (7a)
v(x, 0) = v0(x), x ∈ R, (7b)

where A, B ∈ L∞(R × (0, T )) satisfy

ess lim
t→0+

A(x, t) = A(x, 0) in L1loc(R), A(x, 0) ∈ L∞(R); (8a)

|B| ≤ N(ϵ)(A + ϵ) a.e. in R × (0, T ) for all ϵ > 0, ϵN(ϵ)
ϵ→0+
−−−→ 0; (8b)

At + Bx = 0 in D ′(R × (0, T )). (8c)
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