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a b s t r a c t

The Birkhoff–James orthogonality is a generalization of Hilbert space orthogonality to Ba-
nach spaces. We investigate this notion of orthogonality when the Banach space has more
structures. We start by doing so for the Banach space of square matrices moving gradually
to all bounded operators on any Hilbert space, then to an arbitrary C∗-algebra and finally a
Hilbert C∗-module.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a complex Banach space. An element x ∈ X is said to be Birkhoff–James orthogonal to another element y ∈ X
if ∥x + λy∥ ≥ ∥x∥ for all complex numbers λ. It is easy to see that Birkhoff–James orthogonality is equivalent to the usual
orthogonality in case X is a Hilbert space. When X = M(n), the Banach space of all n × n complex square matrices, a very
tractable condition of Birkhoff–James orthogonality was found by Bhatia and Šemrl in [4]. They showed that an n×nmatrix
A is Birkhoff–James orthogonal to an n × n matrix B if and only if there is a unit vector x ∈ Cn such that ∥Ax∥ = ∥A∥ and
⟨Ax, Bx⟩ = 0. Here ∥A∥ denotes the operator norm of A. Later Benitez, Fernandez and Soriano [3] showed that a necessary
and sufficient condition for the norm of a real finite dimensional normed space X to be induced by an inner product is that
for any A, B ∈ B(X), A is Birkhoff–James orthogonal to B if and only if there exists a unit vector x ∈ X such that ∥Ax∥ = ∥A∥

and ⟨Ax, Bx⟩ = 0.
Motivated by these, in this note we explore Birkhoff–James orthogonality in the setting of Hilbert C∗-modules. All inner

products in this note are conjugate linear in the first component and linear in the second component.We start by giving anew
proof of the Bhatia–Šemrl theoremusing tools of convex analysis. This ismore illuminating because it involvesminimization
of a certain convex function and is therefore a geometric approach. This is a new way of looking at the theorem and might
be useful elsewhere. Another method was given by Kečkic̀ in [7]. He first computes the ϕ-Gateaux derivative Dϕ,A(B) of the

norm at A, in the B and ϕ directions, which is defined by Dϕ,A(B) = limt→0+
∥A+teiϕB∥−∥A∥

t . Then he uses the property that A
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is Birkhoff–James orthogonal to B if and only if infϕ Dϕ,A(B) ≥ 0 to prove the Bhatia–Šemrl theorem. The unit vector x that
crops up naturally suggests that this theorem should be generalizable to Hilbert C∗-modules with x replaced by a state of the
underlying C∗-algebra. We handle the special module B(H,K) in Section 3 with several applications to operator tuples.
Section 4 is on arbitrary Hilbert C∗-modules.

These results can be applied to obtain some distance formulas in M(n) and other C∗-algebras. These are also impor-
tant in problems related to derivations and operator approximations. In approximation theory the condition that A is
Birkhoff–James orthogonal to B can be interpreted as follows. Suppose A ∈ M(n) is not in CB, the subspace spanned by
the matrix B. Then the zero matrix is the best approximation to A among all matrices in CB.

Recently, Birkhoff–James orthogonality in Hilbert C∗-modules has been studied in [1] as our work was in progress. Some
of our results overlap with them. Our approach is very different from that in [1]. We proceed gradually from squarematrices
to Hilbert C∗-modules. This is a natural development.

2. Bhatia–Šemrl theorem

The statement of the theorem is as follows.

Theorem 2.1. Let A, B ∈ M(n). Then ∥A + λ B∥ ≥ ∥A∥ for all λ ∈ C if and only if there is a unit vector x such that ∥Ax∥ = ∥A∥

and ⟨Ax, Bx⟩ = 0.

We first deal with ∥A+ tB∥ ≥ ∥A∥ for all t ∈ R. Our approach will revolve around the function f (t) = ∥A+ tB∥ mapping
R into R+. To say that ∥A + tB∥ ≥ ∥A∥ for all t ∈ R is to say that f attains its minimum at the point 0. Since f is a convex
function, the tools of convex analysis are available. The crux of our argument lies in calculating the subdifferential ∂ f (t) of f ,
and then showing that the point 0 is in the set ∂ f (0).

Definition 2.2. Let f : X → R be a convex function. The subdifferential of f at a point x ∈ X is the set ∂ f (x) of continuous
linear functionals v∗

∈ X∗ such that

f (y)− f (x) ≥ Re v∗(y − x) for all y ∈ X .

It is a convex subset of X∗. Its importance lies in the following proposition.

Proposition 2.3. A convex function f : X → R attains its minimum value at x ∈ X if and only if 0 ∈ ∂ f (x).

We want to apply this to the function f (t) = ∥A + tB∥ which we shall realize as the composition of two functions. The
first of them is t → A + tB from R into M(n). The second is from M(n) to R+, sending any T ∈ M(n) to ∥T∥. Thus we need
to find subdifferentials of compositions. The subdifferential of the norm function has been calculated in [11]. We need it at
a positive semidefinite matrix.

Proposition 2.4. Let A be a positive semidefinite matrix. Then

∂∥A∥ = convex hull of {uu∗
: ∥u∥ = 1, Au = ∥A∥u}. (2.1)

To handle the composition maps, we need a chain rule.

Proposition 2.5. Consider the composite map

Rn L
−→ M(n)

g
−→ R,

where g is a convex map and L(x) = A+ S(x) for all x ∈ Rn, with S : Rn
→ M(n) being a linear map. Then the subdifferential of

g ◦ L at a point x ∈ Rn is given by

∂(g ◦ L)(x) = S∗∂g(L(x)) for all x ∈ Rn, (2.2)

where S∗
: M(n) → Rn is the adjoint of S satisfying

(S∗(T ))′y = Re tr T ∗S(y) for all T ∈ M(n), y ∈ Rn.

(Here (S∗(T ))′ means the transpose of the vector S∗(T ).)

These elementary facts can be found in [6]. We are now ready to prove a real version of the Bhatia–Šemrl theorem using
these concepts.

Theorem 2.6. Let A, B ∈ M(n). Then ∥A+t B∥ ≥ ∥A∥ for all t ∈ R if and only if there exists a unit vector x such that ∥Ax∥ = ∥A∥

and Re⟨Ax, Bx⟩ = 0.
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