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a b s t r a c t

This is the second part in a series of papers concerned with principal Lyapunov expo-
nents and principal Floquet subspaces of positive random dynamical systems in ordered
Banach spaces. The current part focuses on applications of general theory, developed in
the authors’ paper [J. Mierczyǹski, W. Shen, Principal Lyapunov exponents and princi-
pal Floquet spaces of positive random dynamical systems, I, general theory, Trans. Amer.
Math. Soc., in press (http://dx.doi.org/10.1090/S0002-9947-2013-05814-X). Preprint avail-
able at http://arxiv.org/abs/1209.3475 ], to positive random dynamical systems on finite-
dimensional ordered Banach spaces. It is shownunder somequite general assumptions that
measurable linear skew-product semidynamical systems generated bymeasurable families
of positive matrices and by strongly cooperative or type-K strongly monotone systems of
linear ordinary differential equations admit measurable families of generalized principal
Floquet subspaces, generalized principal Lyapunov exponents, and generalized exponen-
tial separations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

This is the second part of a series of several papers. The series is devoted to the study of principal Lyapunov exponents
and principal Floquet subspaces of positive random dynamical systems in ordered Banach spaces.

Lyapunov exponents play an important role in the study of asymptotic dynamics of linear and nonlinear random
evolution systems. Oseledets obtained in [19] important results on Lyapunov exponents and measurable invariant families
of subspaces for finite-dimensional dynamical systems, which are called now the Oseledets multiplicative ergodic theorem.
Since then a huge amount of research has been carried out toward alternative proofs of the Oseledets multiplicative ergodic
theorem (see [2,9,11,15,18,20,21] and the references contained therein) and extensions of the Oseledets multiplicative
theorem for finite dimensional systems to certain infinite dimensional ones (see [2,9,11,13,15,18,20–22,24], and references
therein).

The largest finite Lyapunov exponents (or top Lyapunov exponents) and the associated invariant subspaces of both
deterministic and random dynamical systems play special roles in the applications to nonlinear systems. Classically, the top
finite Lyapunov exponent of a positive deterministic or random dynamical system in an ordered Banach space is called the
principal Lyapunov exponent if the associated invariant family of subspaces corresponding to it consists of one-dimensional
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subspaces spanned by a positive vector (in such case, invariant subspaces are called the principal Floquet subspaces). For
more on those subjects see [17].

In the first part of the series, [17], we introduced the notions of generalized principal Floquet subspaces, generalized
principal Lyapunov exponents, and generalized exponential separations, which extend the corresponding classical notions.
The classical theory of principal Lyapunov exponents, principal Floquet subspaces, and exponential separations for strongly
positive and compact deterministic systems is extended to quite general positive random dynamical systems in ordered
Banach spaces.

In the present, second part of the series, we consider applications of the general theory developed in [17] to positive
random dynamical systems arising from a variety of random mappings and ordinary differential equations. To be more
specific, let ((Ω, F, P), θt) be an ergodic metric dynamical system. We investigate positive random matrix models of the
form ((Uω(n))ω∈Ω,n∈Z+ , (θn)n∈Z) (including random Leslie matrix models) (see Section 3), where

Uω(1)u =


s11(ω) s12(ω) · · · s1N(ω)
s21(ω) s22(ω) · · · s2N(ω)

...
...

. . .
...

sN1(ω) sN2(ω) · · · sNN(ω)

 u, u ∈ RN , (1.1)

sij(ω) ≥ 0 for i, j = 1, 2, . . . ,N and ω ∈ Ω; random cooperative systems of ordinary differential equations of the form
(see Section 4.1)

u̇(t) = A(θtω)u(t), ω ∈ Ω, t ∈ R, u ∈ RN , (1.2)

where

A(ω) =


a11(ω) a12(ω) · · · a1N(ω)
a21(ω) a22(ω) · · · a2N(ω)

...
...

. . .
...

aN1(ω) aN2(ω) · · · aNN(ω)

 ,

and aij(ω) ≥ 0 for i ≠ j, i, j = 1, 2, . . . ,N and ω ∈ Ω; and random type-K monotone systems of ordinary differential
equations (see Section 4.2)

u̇(t) = B(θtω)u(t), ω ∈ Ω, t ∈ R, u ∈ RN , (1.3)

where for each ω ∈ Ω ,

B(ω) =


b11(ω) b12(ω) · · · b1N(ω)
b21(ω) b22(ω) · · · b2N(ω)

...
...

. . .
...

bN1(ω) bN2(ω) · · · bNN(ω)

 ,

and there are 1 ≤ k, l ≤ N such that k+ l = N, bij(ω) ≥ 0 for i ≠ j and i, j ∈ {1, 2, . . . , k} or i, j ∈ {k+ 1, k+ 2, . . . , k+ l},
and bij(ω) ≤ 0 for i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , k + l} or i ∈ {k + 1, . . . , k + l} and j ∈ {1, . . . , k}.

We remark that, biologically, (1.1) describes discrete-time age-structured population models, (1.2) models a system of
N species which is cooperative, and (1.3) models a community of N species which can be divided into two subcommunities,
one subcommunity consisting of k species and the other consisting of l species, such that the interactions between every
pair of species in either subcommunity are cooperative, whereas the interactions between the species belonging to different
subcommunities are competitive. The study of (1.1)–(1.3) will provide some basic tool for the study of randomdiscrete-time
age-structured nonlinear population models and random cooperative or type-K monotone systems of nonlinear ordinary
differential equations. The reader is referred to [4–8,10,14,25,26,28,29], and references therein for the study of discrete-time
age-structured population models and time periodic and random cooperative and type-K monotone systems of nonlinear
ordinary differential equations.

Under quite general conditions, (1.1), (1.2), generatemeasurable linear skew-product semidynamical systems onΩ×RN ,
preserving the natural ordering on RN (i.e., the order generated by the cone (RN)+ = { u = (u1, . . . , uN)⊤ : ui ≥ 0, i =

1, . . . ,N }), and (1.3) generates ameasurable linear skew-product semidynamical system onΩ ×RN , preserving the type-K
ordering on RN generated by (Rk)+ × (Rl)− = { u = (u1, . . . , uN)⊤ : ui ≥ 0 for i = 1, . . . , k and ui ≤ 0 for i = k + 1, . . . ,
k + l(= N) }.

Observe that by the following variable change:

ui → ui for i = 1, . . . , k and ui → −ui for i = k + 1, . . . , k + l(= N),

the random type-K monotone system (1.3) becomes a random cooperative system of form (1.2) (see Section 4.2 for details).
We will therefore focus on the study of (1.1) and (1.2). Applying the general theory developed in Part I [17], we obtain the
following results.
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