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a b s t r a c t

The relation between the solutions of the full Kostant–Toda lattice and the discrete
Korteweg–de Vries equation is analyzed. A method for constructing solutions of these
systems is given. As a consequence of the matricial interpretation of this method, the
transform of Darboux is extended for general Hessenberg banded matrices.
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1. Introduction

In [10,7] the construction of a solution of the Toda lattice

ȧn = bn − bn−1

ḃn = bn(an+1 − an)


, n ∈ N, (1)

from another given solution was studied. Both solutions of (1) were linked to each other by a Backlünd transformation, also
called the Miura transformation, given by

bn = γ2nγ2n+1, an = γ2n−1 + γ2n + C
b̃n = γ2n+1γ2n+2, ãn = γ2n + γ2n+1 + C


where {γn} is a solution of the Volterra lattice

γ̇n = γn (γn+1 − γn−1) . (2)

Here and in the following, the dot means differentiation with respect to t ∈ R. However, we suppress the explicit t-
dependence for brevity.

In [2], the first and the second authors generalized the analysis given in [7] to the kind of Toda and Volterra lattices
studied in [1]. As a particular case, the results obtained in [2] extend the corresponding of [7] to the case of Toda lattices
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where an(t) and bn(t) are complex functions of t ∈ R. Now, our goal is to extend the results of [2] and [7] to the complex
full Kostant–Toda lattice, which is given by
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, n ∈ N. (3)

In the sequel, for each n ∈ N we assume that a(i)
n , i = 1, 2, . . . , p, in (3) are continuous functions with complex values

defined in the open interval In such that

N
n=1

In ≠ ∅, for all N ∈ N. (4)

It is easy to check that these equations can be formally written in a Lax pair form J̇ = [J, J−], where [M,N] = MN − NM is
the commutator of the operatorsM and N , and J, J− are the operators whose matricial representation is given, respectively,
by the banded matrices
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and where J− is the lower triangular part of J .
In this paper we do not distinguish between each operator and its matricial representation. Moreover, we underline the

formal sense of the Lax pair expression. In fact, it could be that there is no open interval where all the entries of J are defined.

Definition 1. We say that J is a solution of (3) if its entries verify (3)–(4).

An important tool in the study of these systems is the sequence of polynomials Pn(z) = Pn(t, z) associated with the matrix
J , i.e., the polynomials defined by the following recurrence relation, given for n = 0, 1, . . . by

p−1
i=1

a(p−i+1)
n−p+i+1Pn−p+i(z) + (a(1)

n+1 − z)Pn(z) + Pn+1(z) = 0

P0(z) = 1, P−1(z) = · · · = P−p+1(z) = 0.

 (6)

We will use the following well-known fact:

Pn(z) = det (zIn − Jn) , n ∈ N. (7)

Here and in the sequel we denote by An the finite matrix formed with the first n rows and n columns of each infinite
matrix A.

For each p ∈ N, the system

γ̇n = γn


p−1
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γn+i −

p−1
i=1

γn−i


, n ∈ N, (8)

called discrete Korteweg–de Vries equations, is an extension of the Volterra lattices (2) studied in [10,7] (see also [6]). As
in (3)–(4), for each n ∈ N we assume that the functions in (8) are continuous and defined in an open set On such that

N
n=1

On ≠ ∅, for all N ∈ N. (9)
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