
The Journal of Systems and Software 104 (2015) 90–111

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Investigating security threats in architectural context: Experimental

evaluations of misuse case maps

Peter Karpati a,1, Andreas L. Opdahl b,∗, Guttorm Sindre a

a Department of Computer and Information Science, Norwegian University of Science and Technology, Sem Sælands vei 7-9, NO-7491 Trondheim, Norway
b Department of Information Science and Media Studies, University of Bergen, P.O. Box 7802, NO-5020 Bergen, Norway

a r t i c l e i n f o

Article history:

Received 28 June 2014

Revised 13 February 2015

Accepted 14 February 2015

Available online 23 February 2015

Keywords:

computer security

Intrusion analysis

Use case maps

a b s t r a c t

Many techniques have been proposed for eliciting software security requirements during the early require-

ments engineering phase. However, few techniques so far provide dedicated views of security issues in a

software systems architecture context. This is a problem, because almost all requirements work today hap-

pens in a given architectural context, and understanding this architecture is vital for identifying security

vulnerabilities and corresponding mitigations. Misuse case maps attempt to provide an integrated view of

security and architecture by augmenting use case maps with misuse case concepts. This paper evaluates

misuse case maps through two controlled experiments where 33 and 54 ICT students worked on complex

real-life intrusions described in the literature. The students who used misuse case maps showed significantly

better understanding of intrusions and better ability to suggest mitigations than students who used a com-

bination of two existing techniques as an alternative treatment. Misuse case maps were also perceived more

favourably overall than the alternative treatment, and participants reported using misuse case maps more

when solving their tasks.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Security should be addressed already at the earliest stages of soft-

ware development (Jürjens, 2005), and a variety of methods and

techniques have recently been proposed for secure software devel-

opment (e.g., Jürjens, 2002; Dimitrakos et al., 2003; Van Lamsweerde,

2004; Giorgini et al., 2005), including security requirements (e.g.,

McDermott and Fox, 1999; Sindre and Opdahl, 2000; Firesmith, 2003;

Liu et al., 2003; Lin et al., 2004) and secure architecture design (e.g.,

Jensen, 1998; Deng et al., 2003; Ali et al., 2009; Wang et al., 1999).

However, few authors have focussed on the relationship between

security requirements and software systems architecture, and very

few methods or techniques (e.g., Karpati et al., 2010a,b; Herrmann

et al., 2012) have been proposed that provide dedicated overviews of

high-level security issues in a software systems architecture context.

This is a problem, because almost all requirements work today hap-

pens in a wholly- or partially-predetermined architectural context

(Nuseibeh, 2001; Jarke et al., 2011), which is given, for example, by

an existing system to be modified or extended; by the neighbouring

∗ Corresponding author. Tel.: +47 5558 4140; fax: +47 5558 9149.

E-mail addresses: Peter.Karpati@hrp.no (P. Karpati), Andreas.Opdahl@uib.no,

AndreasOpdahl@gmail.com (A.L. Opdahl), Guttorm.Sindre@idi.ntnu.no (G. Sindre).
1 Present address: Institute for Energy Technology, P.O. Box 173, NO-1751 Halden,

Norway.

systems it needs to communicate with; and by preexisting architec-

ture and infrastructure standards. Understanding this, often complex,

existing architecture is vital when identifying security vulnerabilities

and corresponding mitigations during early requirements engineer-

ing. Even in later requirements stages, it has become widely accepted

that software requirements and architecture design are concurrent

activities (Nuseibeh, 2001; Mayer et al., 2005), especially in complex

problem domains (Jarke et al., 2010) where security often needs extra

attention.

In previous work (Karpati et al., 2010a,b; Katta et al., 2010), we

have therefore proposed misuse case maps (MUCM), which combine

ideas from our own previous work on misuse cases (MUC; Sindre and

Opdahl, 2000, 2005) with ideas from Amyot, Buhr and Casselman’s

use case maps (UCM; Buhr, 1996; Buhr and Casselman, 1996; Amyot,

1999). The purpose of MUCM is to encourage investigation of poten-

tial security vulnerabilities and corresponding mitigations in a sys-

tems architecture context. The technique is intended to help identi-

fying vulnerabilities of many different types and to help suggesting

mitigations of many different types for each vulnerability. This pa-

per presents an experimental evaluation of MUCM through two con-

trolled student experiments, which extend our previous work on

MUCM. In Karpati et al. (2010b), we have presented a first, formative

evaluation of MUCM through a small survey of researcher colleagues—

the present paper instead uses controlled experimentation that in-

volves more participants, uses more realistic tasks, and measures

http://dx.doi.org/10.1016/j.jss.2015.02.040

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.02.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.02.040&domain=pdf
mailto:Peter.Karpati@hrp.no
mailto:Andreas.Opdahl@uib.no
mailto:AndreasOpdahl@gmail.com
mailto:Guttorm.Sindre@idi.ntnu.no
http://dx.doi.org/10.1016/j.jss.2015.02.040


P. Karpati et al. / The Journal of Systems and Software 104 (2015) 90–111 91

more variables. In Katta et al. (2010), we have compared MUCM

experimentally with another experimental technique (MUSD)—the

present paper instead compares MUCM with existing notations that

are commonly used in practice. In Karpati et al. (2010a, 2011), we

have presented limited analyses of an experiment—the present paper

reports the first full analysis of this experiment, including all depen-

dent variables.2 The analysis of a second, additional experiment is

presented for the first time here, along with an overall analysis of

both experiments.

The purpose of our evaluation is to investigate further whether

MUCM is potentially a useful addition to the arsenal of modelling tech-

niques that developers and security experts have at their disposal

while collaborating to develop secure software. And if so, we would

like to know more about how it is potentially useful, and why. Be-

cause we are not aware of directly comparable techniques out there,

our aim is not in any way to show that MUCMs are objectively “bet-

ter than” or “superior to” existing techniques. Indeed, we advocate

a multi-perspective approach to analysing requirements in general,

and security requirements in particular, to which we hope MUCMs can

provide one new and complementary perspective alongside existing

ones. The rest of the paper is organised into related work—including

our previous work on misuse cases and misuse case maps—(Section 2),

research methods (Section 3), results (Section 4), discussion

(Section 5), and conclusion (Section 6).

2. Background and related work

A number of techniques have been proposed for security require-

ments engineering, as can be seen for instance in surveys like (Tøndel

et al., 2008; Fabian et al., 2010; Mellado et al., 2010; Karpati et al.,

2011; Salini and Kanmani, 2012). Also, the relationship between secu-

rity requirements engineering techniques and risk analysis has been

reviewed by Muñante et al. (2014), and secure systems development

onwards from requirements to design has been reviewed by Uzunov

et al. (2012) and Lucio et al. (2014). Our purpose in this section is

therefore not to make a complete review of previous research in

the area, only to cover the most important techniques for security

requirements (Section 2.1), related system development techniques

(Section 2.2), secure architecture design (Section 2.3), and the

relationship between security requirements and architecture

(Section 2.4), in order to provide a context for our own work. Fi-

nally, Section 2.5 will provide necessary background material for the

rest of the paper, including our previously published work on misuse

case maps (Karpati et al., 2010a,b, 2011; Katta et al., 2010), in order

to make it possible to understand the starting point for this paper

without having to read the previous papers.

2.1. Techniques and methods for security requirements

Modelling techniques and methods that are specific to secu-

rity requirements work include, abuse cases (McDermott and Fox,

1999), misuse cases (Sindre and Opdahl, 2000), and security use cases

(Firesmith, 2003), which are security-oriented variants of use cases

(Jacobson, 1992). Abuse and misuse cases represent behaviours that

potential attackers want to perform using the system, whereas secu-

rity use cases represent countermeasures intended to avoid or repel

these attacks. The difference between abuse and misuse cases is that

the latter show use and misuse in the same picture, whereas abuse

cases are drawn in separate diagrams (for more details about mis-

use cases, see Section 2.5). Secure i∗ (Liu et al., 2003) is an extension

of the i∗ modelling language, where malicious actors and their goals

are modelled with inverted variants of the usual icons. Elahi et al.

2 Because we have reconsidered the coding and introduced some new tests, the

detailed results reported here sometimes differ from these earlier reports.

(2010) propose extensions to i∗ to support systematic security re-

quirements elicitation and analysis centred around vulnerabilities,

attackers, and the security impacts of attacks. Elahi (2012) extends i∗

with Analytic Hierarchy Process (AHP) analysis of security trade-offs.

Abuse frames (Lin et al., 2004) extend problem frames with anti-

requirements that might be held by potential attackers. Languages

for secure business process modelling have been proposed based on

both BPMN (Rodríguez et al., 2005) and UML activity diagrams (Sindre,

2007; Rodríguez et al., 2006). Katta et al. (2010) adapts UML sequence

diagrams to security analysis.

Generic security techniques can also be used to analyse software

security requirements, such as threat trees (Amoroso, 1994) and at-

tack trees (Schneier, 2011). The latter represents a high-level attack

as the root node of a tree so that it can be decomposed through

AND/OR branches into lower-level attacks that must succeed in par-

ticular combinations for the high-level one to succeed. Attack trees

are intuitive, and many extensions have appeared, such as defense

trees (Bistarelli et al., 2006), protection trees (Edge et al., 2006), at-

tack response trees (Zonouz et al., 2009), attack countermeasure trees

(Roy et al., 2010), and unified parametric attack trees (Wang et al.,

2011). The formal specification language Z has also been used to

specify security-critical systems (Boswell, 1993; Hall and Chapman,

2002).

The Common Criteria method (CCITSE 2002) provides, among

other things, a classification of various types of functional security

requirements. A sophisticated taxonomy for security requirements

is also provided in Firesmith (2005). Massacci et al. (2011) integrate

and extend the conceptual frameworks behind i∗/Tropos and Prob-

lem Frames to a security ontology, grounded in DOLCE (Gangemi

et al., 2002), in order to provide clear definitions of security con-

cepts. Mellado et al. (2010) and Karpati et al. (2011) review and

compare broad selections of current security requirements engineer-

ing approaches. Mayer et al. (2007) use ontology to aid security re-

quirements specification. Raspotnig and Opdahl (2013) review and

compare risk identification techniques for safety and for security

requirements, whereas Mayer et al. (2007) present ISSRM, a ref-

erence model for information system security risk management.

Matulevicius et al. (2008) align misuse cases with ISSRM. Mayer et al.

(2007) and Dubois et al. (2010) develop it further into a framework

for security risk management, which is used to align mal-activity di-

agrams with risk management in Chowdhury et al. (2012). Raspotnig

et al. (2012) propose a method for coordinated elicitation and analysis

of safety and security requirements.

Other researchers have also investigated the effectiveness and user

perception of security requirements techniques empirically. Labunets

et al. (2013) compare CORAS and SREP in a controlled experiment with

28 master students, measuring effectiveness by the students’ perfor-

mance of given tasks and perception by the participant responses

to a TAM-based questionnaire. Massacci and Paci (2012) empirically

compare of four techniques—CORAS, Problem Frames, Secure I∗, and

Secure Tropos—through a qualitative investigation relying on obser-

vations, recordings, interviews, and focus group discussions. Other

empirical evaluations of security modelling techniques are reviewed

in Opdahl and Sindre (2009).

2.2. Techniques and methods for secure software development

Other security techniques and methods attempt to cover later

software development phases in addition to requirements. Secure

Tropos (Giorgini et al., 2005) extends the Tropos method (Bresciani

et al., 2004) with security-related concepts for ownership, permis-

sion, and delegation. It is adapted in Matulevičius et al. (2008) for

security risk management in the early phases of information systems

development based on ISSRM (Mayer et al., 2007). Dardenne et al.

(1993), extend KAOS with anti-goals (Van Lamsweerde, 2004) that

can be used to express the goals of an intruder who aims to exploit



Download English Version:

https://daneshyari.com/en/article/461688

Download Persian Version:

https://daneshyari.com/article/461688

Daneshyari.com

https://daneshyari.com/en/article/461688
https://daneshyari.com/article/461688
https://daneshyari.com

