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a b s t r a c t

In this paper, we study the (asymptotic and exponential) stability of the m-fold circle as a
solution of the p-curve shortening flow (p ≥ 1 an integer).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let

x : S1
× [0, T ) −→ R2

be a family of smooth immersions of S1, the unit circle, into R2. We will say that x satisfies the p-curve shortening flow,
p ≥ 1, if x satisfies

∂x
∂t

= −
1
p
kpN, (1)

where k is the curvature of the embedding and N is the normal vector pointing outwards the region bounded by x (·, t).
Much is known about this family of flows. To select a few among many beautiful and fundamental works on the subject,

we must mention the works of Gage and Hamilton [8], and Ben Andrews [2,3].
In this paper we will be concerned with the stability of m-fold circles as solutions to the p-curve shortening flow, p a

positive integer. It is well known that there are certain small perturbations of the 2-fold circle such that the corresponding
solution to the curve shortening flow does not behave asymptotically as a shrinking 2-fold circle, as it is described in [1] (see
the discussion after Proposition 5.2 of that paper): the example basically consists on going around the circle twice, taking
care that during the second turn we enlarge the circle a little bit, so the perturbed curve looks like a limacon; in this case,
under the curve shortening flow, the inner loop will shrink faster than the outer loop and a cusp forms in finite time, and
hence the curve does not shrink to a point as a 2-fold circle would. This example, which is easy to generalize to the case of
m-fold circles, shows that the stability problem does have its subtleties.

∗ Corresponding author.
E-mail address: jcortiss@uniandes.edu.co (J.C. Cortissoz).

0022-247X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2013.01.014

http://dx.doi.org/10.1016/j.jmaa.2013.01.014
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmaa.2013.01.014&domain=pdf
mailto:jcortiss@uniandes.edu.co
http://dx.doi.org/10.1016/j.jmaa.2013.01.014


58 J.C. Cortissoz, A. Murcia / J. Math. Anal. Appl. 402 (2013) 57–70

Very recently, Wang in [15] showed the asymptotic stability of m-fold circles under certain convex small 2πm
n -periodic

perturbations as solutions to the curve shortening flow (i.e., for the case when p = 1). Other interesting works, besides
Wang’s, regarding stability of solutions to the curve shortening flow are the by now classical papers of Abresch and Langer
[1], and Epstein and Weinstein [6]. We will extend the work of Wang in two ways: we will show asymptotic stability
results for the m-fold circle as a solution to the p-curve shortening flow for p any positive integer, and we will provide
sharp stabilization estimates for the curvature of solutions to the p-curve shortening flowwhose initial data are appropriate
small perturbations of anm-fold circle.

To study the stability ofm-fold circles as solutions to (1) we will consider the Boundary Value Problem,
∂k
∂t

= k2

kp−1 ∂

2k
∂θ2

+ (p − 1) kp−2

∂k
∂θ

2

+
1
p
kp


in

0,

2π
λ


× (0, T )

k (θ, 0) = ψ (θ) on

0,

2π
λ


,

(2)

λ >


p+2
p , under periodic boundary conditions, and the initial data ψ is a strictly positive function. As it is, (2) has no

immediate geometric interpretation. However, when λ is an appropriate rational number, (2) is the evolution equation of
the curvature of a curve being deformed via (1) under the assumption that the initial curve satisfies certain symmetries;
more precisely, when λ =

n
m , the study of Eq. (2) is equivalent to the study of (1) when the initial data is a perturbation of an

m-fold circle under a 2πm
n -periodic perturbation (see also Lemma 2.3 in [12]), and in this case the parameter θ corresponds

to the angle formed by the outward unit normal to the curve with respect to the positive x-semiaxis. It is well known that
given a strictly positive initial data (2) has a unique solution for a short time (for instance, by identifying the endpoints
of

0, 2π

λ


, (2) can be seen as a quasilinear parabolic problem in S1, so we can use the theory in Section 7 of [13] to prove

existence and uniqueness of solutions), and also via the maximum principle it can be shown that this solution blows up in
finite time; relevant results on the blow-up behavior of general curve shortening flows can be found in [2,11,12].

The method we will use to prove our stability results was introduced in [5] (inspired by [14]) to study the blow-up
behavior of certain nonlinear parabolic equations with periodic boundary conditions, but as the reader will notice, it can be
also used to study the stability of certain blow-up profiles, and the regularity of solutions to (2). For instance, as a byproduct
of themethodwewill employ, it can be shown that, under certain conditions on the initial data, solutions to (2) are analytic.
So we hope that the reader may find the method used in this paper of independent interest.

The organization of this paper is as follows. In Section 2 we present our main results: Theorem 2.1 (and its restatement
for a normalized version of (2): Corollary 2.1), Theorem 2.2, and their application to the stability problem of m-fold circles
(Theorem 2.3, whose statement and proof are in Section 2.1). In Section 3, we present the proof of Theorem 2.1. In Section 4,
we discuss the exponential stability of the constant steady solution w ≡ 1 of the normalized version of (2), and prove
Theorem 2.2.

Finally, we want to thank the referee for many useful comments that helped improve the organization and presentation
of this paper.

2. Main results

Our results on the behavior of the p-curve shortening flow will follow as a consequence of a few results on the behavior
of solutions to (2), that we will promptly describe; but before we state our main results, let us set some definitions and
notation. Given f ∈ L2


0, 2π

λ


, we write its Fourier expansion as,


n∈Z

f̂ (n) eiλnx where f̂ (n) =
λ

2π

 2π
λ

0
f (θ) e−inθ dθ.

Wewill refer to f̂ (n) as the n-th Fourier coefficient and to n as the frequency or wave number. We now define the family of
seminorms,

∥f ∥β = max

sup
n∈Z

|n|β
Re f̂ (n) , sup

n∈Z
|n|β

Im f̂ (n) .
As is customary, we define C l


0, 2π

λ


, l = 0, 1, 2, . . . , as the space of functions with continuous derivatives of order l,

equipped with the norm

∥f ∥
C l


0, 2π
λ

 = max
j=0,1,2,...,l

sup
θ∈

0, 2π

λ


djf (θ)dθ j

 .
Our first result is the following theorem.
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