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The important role played by the classical inequality of Jensen in probability theory, economics, statistical physics,
information theory etc is well known. See [5,6]. In recent years, a number of authors have noticed the possibility of extending
this inequality to the framework of functions that are mixed convex (in the sense of the existence of one inflection point).
See [1,2,4]. In all of these papers one assumes that both the function and the measure under consideration verify certain
conditions of symmetry. However, the inequality of Jensen is much more general, as the following simple remark shows.
Suppose that K is a convex subset of the Euclidean space RN carrying a Borel probability measure . Then every j-integrable
function f : K — R that admits a supporting hyperplane at the barycenter of u,

b= [ xduw, ®)
K

verifies the Jensen inequality

fby) < /f(X)dM(X)- ()]
K
Indeed, the existence of a supporting hyperplane at b, is equivalent to the existence of an affine function h(x) = (x, v)+c
such that
fb,) =hb,) and f(x) > h(x) forallx e K.
Then

Fb) = hiby) =h< / XdM(X)) _ / h(Odu (o) < / F0du ).
K K K

As is well known, the convexity assures the existence of a supporting hyperplane at each interior point. See [5, Theorem
3.7.1, p. 128]. This explains why Jensen’s inequality works nicely in that context. The aim of our paper is to extend the validity
of Jensen’s inequality outside mixed convexity and also outside the framework of Borel probability measures.
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In order to make our approach easily understandable we will restrict ourselves to the case of functions of one real variable.
However, most of our results can be extended easily to higher dimensions, by replacing the usual intervals by N-dimensional
intervals and symmetry with respect to a point by symmetry with respect to a hyperplane. See Example 3.

We start with the following version of the Jensen inequality for mixed convex functions that discards any assumption on
the symmetry of the measure involved.

Theorem 1. Suppose that f is a real-valued function defined on an interval [a, b] and c is a point in [a, ”+b] such that:

(i) f(c = x) + f(c + x) = 2f(c) whenever c + x € [a, b];
(ii) flic,py is convex.

Then

b
b = [ Fduc.

for every Borel probability measure i« on [a, b] whose barycenter lies in the interval [2c — a, b].
The last inequality works in the reverse direction when f (¢ p) is concave.

Proof. The case where ¢ = a is covered by the classical inequality of Jensen, so we may assume that ¢ € (a, ”;—b). In this
case the point 2c — a is interior to [a, b]. By our hypotheses, the barycenter b, lies in the interval [2c — a, b]. If b,, = b, then
w = & and the conclusion of Theorem 1 is clear. If b, is interior to [a, b], we will denote by h the affine function joining the
points (a, f(a)) and (2c — a, f(2c — a)) and we will consider the function

_Jhx) ifx € [a,2c —d]
g(x)_{f(x) ifx € [2¢ — a, b]. (1)

Clearly, g is convex and this fact motivates the existence of a support line £ of g at b,. See [5, Lemma 1.5.1, p. 30]. Since
h > f, then necessarily £ is a support line at b,, also for f. By a remark above, this ends the proof. O

A useful consequence of Theorem 1 in the case of absolutely continuous measures is as follows:

Corollary 1. Suppose that f : [—b, b] — R is an odd function whose restriction to [0, b] is convex and p : [—b, b] — [0, o0)
is a nondecreasing function that does not vanish on (—b/3, b]. Then for every a € [—b/3, b),

1 b
_ d
d (fabp(x)dx/ *p0d ) f p(x)dx / J@pGodx.

Proof. The case where a > 0 is covered by the classical inequality of Jensen.
Ifa < 0, then

b —3a
/ X+ Dp()dx > / (x+ Dp(0dx

—a —3a
- f (x + p()dx + f (x + Op(x)dx

—a

—a —3a
> / x4+ a)p(x)dx + p(—a) f (x + a)dx
- f (x+ Opdx — p(—a) f ¢+ a)dx

_ / (x4 @) (p() — p(—a)) dx = 0,

and thus Theorem 1 applies. O

An inspection of the argument of Corollary 1 shows that the monotonicity hypothesis on p can be relaxed by asking only
for the integrability of p and the fact that p(x) < p(—a) < p(y) for all x and y with x < —a < y. However, simple examples
show that the restriction a € [—b/3, b] in Corollary 1 cannot be dropped.

Consider now the discrete version of Theorem 1.

Corollary 2. Suppose that f is a real-valued function defined on an interval I that contains the origin such that f|ino,00) is @
convex function and f (—x) = —f (x) whenever x and —x belong to I. Then for every family of points a4, . .., a, of I and every
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