

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

New Jensen-type inequalities

Constantin P. Niculescu*, Cătălin Irinel Spiridon

University of Craiova, Department of Mathematics, Street A. I. Cuza 13, Craiova, RO-200585, Romania

ARTICLE INFO

Article history: Received 14 March 2012 Available online 4 December 2012 Submitted by B.S. Thomson

Keywords: Jensen's inequality Convex function Almost convex function Supporting hyperplane

ABSTRACT

We develop a new framework for the Jensen-type inequalities that allows us to deal with functions that are not necessarily convex and Borel measures that are not necessarily positive.

© 2012 Elsevier Inc. All rights reserved.

The important role played by the classical inequality of Jensen in probability theory, economics, statistical physics, information theory etc is well known. See [5,6]. In recent years, a number of authors have noticed the possibility of extending this inequality to the framework of functions that are mixed convex (in the sense of the existence of one inflection point). See [1,2,4]. In all of these papers one assumes that both the function and the measure under consideration verify certain conditions of symmetry. However, the inequality of Jensen is much more general, as the following simple remark shows. Suppose that K is a convex subset of the Euclidean space \mathbb{R}^N carrying a Borel probability measure μ . Then every μ -integrable function $f: K \to \mathbb{R}$ that admits a supporting hyperplane at the barycenter of μ ,

$$b_{\mu} = \int_{\nu} x d\mu(x),\tag{B}$$

verifies the Jensen inequality

$$f(b_{\mu}) \le \int_{K} f(x) d\mu(x). \tag{J}$$

Indeed, the existence of a supporting hyperplane at b_{μ} is equivalent to the existence of an affine function $h(x) = \langle x, v \rangle + c$ such that

$$f(b_{\mu}) = h(b_{\mu})$$
 and $f(x) \ge h(x)$ for all $x \in K$.

Then

$$f(b_{\mu}) = h(b_{\mu}) = h\left(\int_{\mathbb{K}} x d\mu(x)\right) = \int_{\mathbb{K}} h(x) d\mu(x) \le \int_{\mathbb{K}} f(x) d\mu(x).$$

As is well known, the convexity assures the existence of a supporting hyperplane at each interior point. See [5, Theorem 3.7.1, p. 128]. This explains why Jensen's inequality works nicely in that context. The aim of our paper is to extend the validity of Jensen's inequality outside mixed convexity and also outside the framework of Borel probability measures.

E-mail addresses: cniculescu47@yahoo.com (C.P. Niculescu), catalin_gsep@yahoo.com (C.I. Spiridon).

^{*} Corresponding author.

In order to make our approach easily understandable we will restrict ourselves to the case of functions of one real variable. However, most of our results can be extended easily to higher dimensions, by replacing the usual intervals by *N*-dimensional intervals and symmetry with respect to a point by symmetry with respect to a hyperplane. See Example 3.

We start with the following version of the Jensen inequality for mixed convex functions that discards any assumption on the symmetry of the measure involved.

Theorem 1. Suppose that f is a real-valued function defined on an interval [a, b] and c is a point in $[a, \frac{a+b}{2}]$ such that:

(i)
$$f(c-x) + f(c+x) = 2f(c)$$
 whenever $c \pm x \in [a, b]$; (ii) $f|_{[c,b]}$ is convex.

Then

$$f(b_{\mu}) \leq \int_{a}^{b} f(x)d\mu(x),$$

for every Borel probability measure μ on [a, b] whose barycenter lies in the interval [2c - a, b]. The last inequality works in the reverse direction when $f|_{[c,b]}$ is concave.

Proof. The case where c=a is covered by the classical inequality of Jensen, so we may assume that $c\in(a,\frac{a+b}{2})$. In this case the point 2c-a is interior to [a,b]. By our hypotheses, the barycenter b_{μ} lies in the interval [2c-a,b]. If $b_{\mu}=b$, then $\mu=\delta_b$ and the conclusion of Theorem 1 is clear. If b_{μ} is interior to [a,b], we will denote by h the affine function joining the points (a,f(a)) and (2c-a,f(2c-a)) and we will consider the function

$$g(x) = \begin{cases} h(x) & \text{if } x \in [a, 2c - a] \\ f(x) & \text{if } x \in [2c - a, b]. \end{cases}$$
 (1)

Clearly, g is convex and this fact motivates the existence of a support line ℓ of g at b_{μ} . See [5, Lemma 1.5.1, p. 30]. Since $h \ge f$, then necessarily ℓ is a support line at b_{μ} also for f. By a remark above, this ends the proof. \Box

A useful consequence of Theorem 1 in the case of absolutely continuous measures is as follows:

Corollary 1. Suppose that $f:[-b,b] \to \mathbb{R}$ is an odd function whose restriction to [0,b] is convex and $p:[-b,b] \to [0,\infty)$ is a nondecreasing function that does not vanish on (-b/3,b]. Then for every $a \in [-b/3,b)$,

$$f\left(\frac{1}{\int_a^b p(x)dx}\int_a^b xp(x)dx\right) \leq \frac{1}{\int_a^b p(x)dx}\int_a^b f(x)p(x)dx.$$

Proof. The case where $a \ge 0$ is covered by the classical inequality of Jensen.

If a < 0, then

$$\int_{a}^{b} (x+a)p(x)dx \ge \int_{a}^{-3a} (x+a)p(x)dx$$

$$= \int_{a}^{-a} (x+a)p(x)dx + \int_{-a}^{-3a} (x+a)p(x)dx$$

$$\ge \int_{a}^{-a} (x+a)p(x)dx + p(-a) \int_{-a}^{-3a} (x+a)dx$$

$$= \int_{a}^{-a} (x+a)p(x)dx - p(-a) \int_{a}^{-a} (x+a)dx$$

$$= \int_{a}^{-a} (x+a)(p(x)-p(-a)) dx \ge 0,$$

and thus Theorem 1 applies. \Box

An inspection of the argument of Corollary 1 shows that the monotonicity hypothesis on p can be relaxed by asking only for the integrability of p and the fact that $p(x) \le p(-a) \le p(y)$ for all x and y with $x \le -a \le y$. However, simple examples show that the restriction $a \in [-b/3, b]$ in Corollary 1 cannot be dropped.

Consider now the discrete version of Theorem 1.

Corollary 2. Suppose that f is a real-valued function defined on an interval I that contains the origin such that $f|_{I\cap[0,\infty)}$ is a convex function and f(-x) = -f(x) whenever x and -x belong to I. Then for every family of points a_1, \ldots, a_n of I and every

Download English Version:

https://daneshyari.com/en/article/4616972

Download Persian Version:

https://daneshyari.com/article/4616972

<u>Daneshyari.com</u>