

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Eigenfunctions of a weighted Laplace operator in the whole space

Nouria Arar^a, Tahar Z. Boulmezaoud^{b,*}

^a Department of Mathematics, University Mentouri, Constantine, Algeria

^b Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin-en-Yvelines, 45, avenue des Etats-Unis, 78035, Versailles, Cedex, France

ARTICLE INFO

Article history: Received 20 February 2012 Available online 23 June 2012 Submitted by Mr. V. Radulescu

Keywords: Laplace operator Unbounded domains Rational functions Stereographic projection Weighted spaces

1. Introduction

In this paper, we consider the eigenvalue problem

$$-\Delta u = \lambda \rho u$$
 in \mathbb{R}^n ,

ABSTRACT

We study the spectrum of the weighted Laplacian $\rho^{-1}\Delta$ in the whole space \mathbb{R}^n . We prove, under adequate conditions on ρ^{-1} , that this spectrum is discrete and we derive an explicit formula for eigenvalues and eigenfunctions when $\rho^{-1} = (|x|^2 + 1)^2$. We get by the way a complete family of rational functions which are mutually orthogonal in a weighted L^2 space.

© 2012 Elsevier Inc. All rights reserved.

(1)

where ρ is a given function. Our objective is twofold. First, we prove that problem (1), under some decay assumptions on ρ at large distances, has an infinite family of eigenfunctions satisfying

$$\int_{\mathbb{R}^n} \frac{|u|^2}{|x|^2+1} < +\infty, \qquad \int_{\mathbb{R}^n} |\nabla u|^2 dx < +\infty.$$

In a second part of the paper, we focus our attention on the particular case $\rho(x) = (|x|^2 + 1)^{-2}$ for which explicit formula of eigenvalues and of eigenfunctions can be deduced. These eigenfunctions turn out to be rational functions.

We use throughout the paper weighted Sobolev spaces as a functional framework for describing the asymptotic behavior of functions.

We need to introduce some notations. Given an integer $n \ge 1$ and a typical point $x = (x_1, ..., x_n)$ of \mathbb{R}^n , we shall write

$$|x| = (x_1^2 + \dots + x_n^2)^{1/2}, \qquad \langle x \rangle = (|x|^2 + 1)^{1/2}, \qquad \langle \langle x \rangle \rangle = \log(|x|^2 + 2).$$

By $L^p(\mathbb{R}^n)$, p > 1, we mean the usual Lebesgue space of *p*th-power integrable (class of) functions on \mathbb{R}^n , equipped with its usual norm. The symbol $\langle \cdot, \cdot \rangle$ will be used to designate duality pairing.

Let us define the weighted spaces we use here: given an integer $m \ge 0$ and a real α we set

$$W^{m,p}_{\alpha}(\mathbb{R}^n) = \{ u \in \mathscr{D}'(\mathbb{R}^n); \ \forall \lambda \in \mathbb{N}^n, \ 0 \le |\lambda| \le m, \langle x \rangle^{\alpha - m + |\lambda|} \partial^{\lambda} u \in L^p(\mathbb{R}^n) \}.$$

* Corresponding author.

E-mail addresses: nour.arar@yahoo.fr (N. Arar), boulmezaoud@math.uvsq.fr (T.Z. Boulmezaoud).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter 0 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.06.009

This is a Banach space when equipped with the norm

$$\|u\|_{W^{m,p}_{\alpha}(\mathbb{R}^n)} = \left(\sum_{|\lambda| \le m} \|\langle x \rangle^{\alpha - m + |\lambda|} \partial^{\lambda} u\|_p^p\right)^{1/p}.$$

When p = 2, $W^{m,2}_{\alpha}(\mathbb{R}^n)$ is denoted by $W^m_{\alpha}(\mathbb{R}^n)$ (*p* is dropped). The reader can refer to, e.g., Hanouzet [1], Giroire [2–6], and references therein for more details. The following properties hold.

- The space $\mathscr{D}(\mathbb{R}^n)$ is dense in $W^{m,p}_{\alpha}(\mathbb{R}^n)$.
- The mapping $u \in W^{m,p}_{\alpha}(\mathbb{R}^n) \to \langle x \rangle^{\beta} u \in W^{m,p}_{\alpha-\beta}(\mathbb{R}^n), \beta$ is being a real, is an isomorphism.
- For any multi-index λ with $|\lambda| \leq m$, the mapping $u \in W^{m,p}_{\alpha}(\mathbb{R}^n) \to \partial^{\lambda} u \in W^{m-|\lambda|,p}_{\alpha}(\mathbb{R}^n)$, is continuous.
- The following embeddings hold $W^{m,p}_{\alpha}(\mathbb{R}^n) \hookrightarrow W^{m-1,p}_{\alpha-1}(\mathbb{R}^n) \hookrightarrow \cdots \hookrightarrow W^{0,p}_{\alpha-m}(\mathbb{R}^n).$
- Denoting by P_ℓ the space of polynomials of degree less or equal to ℓ, ℓ ∈ Z (with the convention P_ℓ = {0} when ℓ < 0), one has

$$\mathbb{P}_{\ell} \subset W_k^{m,p}(\mathbb{R}^n) \quad \text{when } \ell < m-k-\frac{n}{p}.$$

In the bidimensional case (n = 2), we need to introduce the space $X_0^1(\mathbb{R}^2)$ composed of all the distributions u satisfying

$$\int_{\mathbb{R}^2} \frac{|u|^2}{\langle x \rangle^2 \langle \langle x \rangle \rangle^2} dx < +\infty, \qquad \int_{\mathbb{R}^2} |\nabla u|^2 dx < +\infty.$$

This space is equipped with its natural norm. The dual of $X_0^1(\mathbb{R}^2)$ is denoted by $X_0^{-1}(\mathbb{R}^2)$. Observe that $X_0^1(\mathbb{R}^2) \not\subset W_{-1}^0(\mathbb{R}^2)$. However,

$$X_0^1(\mathbb{R}^2) \hookrightarrow W_{-\alpha}^0(\mathbb{R}^2),$$

for $\alpha > 1$. Thus, $W^0_{\alpha}(\mathbb{R}^2) \hookrightarrow X^{-1}_0(\mathbb{R}^2)$ for $\alpha > 1$.

In order to characterize eigenfunctions of the operator $\rho^{-1}\Delta$ in the particular case $\rho(x) = (1 + |x|^2)^{-2}$, we need for later use some notations concerning spherical harmonics on the unit sphere of \mathbb{R}^{n+1} , $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1}; |x| = 1\}$. Recall that spherical harmonics of degree k are restrictions to the sphere \mathbb{S}^n of harmonic homogeneous polynomials of degree k (see, e.g., [7] or [8]). Let \mathbb{H}_k the space of spherical harmonics of degree k on \mathbb{S}^n , $k \ge 0$. We know that $L^2(\mathbb{S}^n) = \bigoplus_{k \ge 0} \mathbb{H}_k$, where $L^2(\mathbb{S}^n)$ is the usual space of (a class of) functions which are square integrable on the unit sphere. This space is equipped with the inner product

$$(u, v)_{L^2(\mathbb{S}^n)} = \int_{\mathbb{S}^n} u(\xi) \overline{v(\xi)} d\xi.$$
(2)

We set $d_k = \dim \mathbb{H}_k$. When n = 1, $d_k = 1$ for $k \ge 0$. When $n \ge 2$, we know that $d_0 = 1$, $d_1 = n + 1$ and

$$d_k = \binom{n+k}{n} - \binom{n+k-2}{n} = \binom{n+k-1}{k} + \binom{n+k-2}{k-1}, \quad \text{for } k \ge 2.$$
(3)

For each $k \ge 0$, we denote by $(\mathscr{Y}_{k,m})_{1 \le m \le d_k}$ an orthogonal basis of \mathbb{H}_k with respect to the inner product (2). We know that

$$-\Delta_{\mathbb{S}^n}\mathscr{Y}_{k,m} = k(k+n-1)\mathscr{Y}_{k,m}$$
 for $k \ge 0$ and $1 \le m \le d_k$,

where $\Delta_{\mathbb{S}^n}$ is the usual Laplace–Beltrami operator.

The remaining of the paper is organized as follows. Section 2 is devoted to the first main result, that is the existence of a discrete spectrum of the operator $\rho^{-1}\Delta$, under some conditions on ρ . In Section 3, expressions of eigenvalues and eigenfunctions of the operator $(|x|^2 + 1)^2\Delta$ are derived by means of the stereographic projection. In Section 4, we disclose some important properties of the obtained eigenfunctions.

2. The first main result

In the sequel, ρ denotes a non zero real measurable function. For any real s, we set

$$c^{\star}(\varrho;s) = \operatorname{ess\,sup}_{\mathbb{R}^n} (|x|^2 + 1)^s \varrho(x), \qquad c_{\star}(\varrho;s) = \operatorname{ess\,inf}_{\mathbb{R}^n} (|x|^2 + 1)^s \varrho(x).$$

We suppose that there exists a real r > 1 such that

$$0 < c_{\star}(\varrho; r) \leq c^{\star}(\varrho; r) < +\infty.$$

(4)

Download English Version:

https://daneshyari.com/en/article/4617129

Download Persian Version:

https://daneshyari.com/article/4617129

Daneshyari.com