
Facilitating software extension with design patterns and
Aspect-Oriented Programming

Konstantinos G. Kouskouras *, Alexander Chatzigeorgiou, George Stephanides

Department of Applied Informatics, University of Macedonia, 156 Egnatia Street, 54006 Thessaloniki, Greece

Received 20 February 2007; received in revised form 15 December 2007; accepted 27 December 2007
Available online 17 January 2008

Abstract

Software products, especially large applications, need to continuously evolve, in order to adapt to the changing environment and
updated requirements. With both the producer and the customer unwilling to replace the existing application with a completely new
one, adoption of design constructs and techniques which facilitate the application extension is a major design issue. In the current work
we investigate the behavior of an object-oriented software application at a specific extension scenario, following three implementation
alternatives with regards to a certain design problem relevant to the extension. The first alternative follows a simplistic solution, the sec-
ond makes use of a design pattern and the third applies Aspect-Oriented Programming techniques to implement the same pattern. An
assessment of the three alternatives is attempted, both on a qualitative and a quantitative level, by identifying the additional design impli-
cations needed to perform the extension and evaluating the effect of the extension on several quality attributes of the application.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Object-oriented design; Aspect-Oriented Programming; Design patterns; Maintainability; Software metrics

1. Introduction

One of the most compelling properties of software prod-
ucts is their need to continuously evolve. In the case of
large software products/applications, both the customer
and the producer endorse this characteristic, since they
both strive to obtain the most out of their investment, to
purchase or develop the products, respectively. Mainte-
nance is becoming a significant part of the software prod-
ucts’ life cycle, as the organizations try to keep them
operating for as long as possible (SWEBOK, 2004). Even
more, most of the maintenance effort concerns adaptive
rather than corrective adjustment of the software products
(due to missed/revised requirements, customization) (Press-
man, 2004). It is then evident that it is extremely important
to build software in such a way that it can easily evolve
(Bengtsson et al., 2004), to the extent that evolution paths

can be foreseen. Understanding the factors that influence
maintainability (i.e. ease with which software can be
enhanced or adapted) of a system can help contain mainte-
nance cost.

Researchers and practitioners have contributed several
methods for building software that meets such expecta-
tions. Incorporation of design patterns when building soft-
ware has been proposed as a way to improve software
reusability and maintainability (Gamma et al., 1995).
Refactoring techniques, aiming at improving code struc-
ture without altering its external behavior, have also been
devised (Fowler, 1999). Lately, the Aspect-Oriented Pro-
gramming paradigm (Kiczales et al., 1997) has been also
been presented as a possible way to enhance an object-ori-
ented system, by concentrating within a single entity (the
aspect) code that would otherwise be scattered among sev-
eral classes, thus adversely affecting maintainability.

Several works exist in the literature, related to the
abovementioned methods. Some of them present aspect-
oriented implementations of design patterns. For example,
Nordberg (2001) suggests that aspect-oriented implementa-

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.12.807

* Corresponding author. Tel.: +30 6944 790944/2310 497347.
E-mail addresses: kkous@otenet.gr, kous@intracom.gr (K.G. Kous-

kouras).

www.elsevier.com/locate/jss

Available online at www.sciencedirect.com

The Journal of Systems and Software 81 (2008) 1725–1737

mailto:kkous@otenet.gr
mailto:kous@intracom.gr


tion of certain design patterns may lead to better designs
with greater effectiveness in anticipating future changes.
Hannemann and Kiczales (2002) present aspect-oriented
implementations of all 23 GoF patterns and comment on
their modularity based on whether these implementations
manifest properties like reusability and (un)plugability.
Another category includes works attempting to compare
object-oriented and aspect-oriented implementations of
the same functionality. Papapetrou and Papadopoulos
(2004) identify functionalities of a web-crawler that could
be modeled as aspects and implement them following both
approaches. Then, they compare the two systems focusing
on the amount of changes and coding needed to add those
functionalities. Tsang et al. (2004) report on another com-
parison, on the basis of class metrics adapted to aspects.
Kulesza et al. (2006) use their metric suite (based on C &
K class metrics and detailed in Sant’Anna et al. (2003))
in order to assess the maintainability of an object-oriented
and an aspect-oriented implementation of a specific system.

Our purpose is to elaborate on the extensibility/expand-
ability of software products, in relation with the two design
practices mentioned above, i.e. design patterns and Aspect-
Oriented Programming. We want to evaluate the different
designs in terms of the ease with which a certain extension
can be achieved and the influence this extension has on the
system’s quality attributes. To help us reach reliable con-
clusions we built a software application in Java, suitable
for our investigation purposes, on which we could experi-
ment. More specifically, we built an emulator of a telecom-
munications exchange, allowing the user to configure it
with commands and to perform simple traffic cases.

A specific extension scenario was investigated in the cur-
rent work. We assumed that new commands and associated
parameters are added in the application. We employed
three different implementation alternatives, with regards
to the application part related to the specific extension.
The first one follows obvious (at least to our minds!) and
simplistic design decisions. The second makes use of a
design pattern (the Registry Pattern (Sommerlad and
Rüedi, 1998)), which is proposed as a means to overcome
some limitations identified in the first alternative. In the
third alternative we implemented the Registry pattern using
Aspect-Oriented Programming techniques.

After implementing the same extension on all three
alternatives we attempted an assessment of theirs by
exploring the implications of the extension in each one.
For each alternative this exploration was twofold. On
one hand we qualitatively evaluated the ease with which
the extension was achieved, i.e. whether the design facili-
tates/promotes/encourages such an extension or makes it
cumbersome (from a design point of view). On the other
hand, we quantitatively checked the effects of the extension
on several quality attributes of the application, as reflected
in metrics, in order to see whether the extension improves,
preserves or has an adverse impact on these metrics.

The rest of the paper is arranged as follows. First, there
is a short description of the application and the extension

scenario chosen. In the following chapter the assessment
framework is analyzed. Then, the first alternative is pre-
sented, commenting on metric results and other qualitative
observations. In the next chapter the Registry pattern is
introduced, along with the alternative implementation
resulting from its application. A short description of the
Aspect-Oriented Programming paradigm follows and next,
the third alternative implementation is presented, with the
Registry pattern being applied using the Aspect-Oriented
Paradigm. Finally, some conclusive remarks are
summarized.

2. The software application and the extension scenario

We chose the field of application to be the telecommuni-
cation industry because of the size and continuous evolu-
tion (due to standards’ revisions and market adaptations)
that systems of this area demonstrate. Furthermore, since
telecommunication products are developed following spe-
cific software engineering processes, maintenance activities
are always foreseen.

So, the application is an emulator of an imaginary tele-
phone exchange. In its current form, it enables the user to

� insert definition commands (e.g. define a connection and
assign a subscriber number to it) and
� emulate simple calls between subscribers.

From an implementation point of view the application
was built in Java. It consists of modules (packages in Java)
that correspond to specific logical (functional) areas.
Regarding its size, it consists of about 50 classes and
1700 non-commented lines of code (before the extension).

As will be seen in the rest of the paper, we view the
notion of module of high significance, since it is quite often
considered as the basic element of object-oriented software
reuse (Booch, 1994). It is seldom the case that a single class
can be reused alone, when certain functionality is needed;
most often there are closely cooperating classes that
together fulfill the functional requirement. If the module1

contents and structure are well chosen and properly
designed, then it can be easily reused, whenever its func-
tionality is needed. Furthermore, in large software systems
the module could be seen as a functional area with well-
defined boundaries and interfaces, such that it could be del-
egated as a whole to a specific group of people or organiza-
tion (within one project or for all its lifetime), thus
facilitating the splitting of responsibilities.

In the simple object-oriented implementation of the
application, the main packages, which are to their largest
extent similar among the alternative implementations, are
as follows:

1 Since we are referring to a specific application built in Java, we will use
the equivalent term ‘package’ throughout the rest of the document.

1726 K.G. Kouskouras et al. / The Journal of Systems and Software 81 (2008) 1725–1737



Download English Version:

https://daneshyari.com/en/article/461715

Download Persian Version:

https://daneshyari.com/article/461715

Daneshyari.com

https://daneshyari.com/en/article/461715
https://daneshyari.com/article/461715
https://daneshyari.com

