
Early quality monitoring in the development of real-time
reactive systems q

O. Ormandjieva a,*, V.S. Alagar a, M. Zheng b

a Department of Computer Science and Software Engineering, Concordia University, EV3.165, 1455 de Maisonneuve West, Montreal,

Quebec, Canada H3G 1M8
b Department of Computer Science, University of Wisconsin-LaCrosse, La Crosse, WI, USA

Received 27 February 2006; received in revised form 20 December 2007; accepted 20 December 2007
Available online 18 January 2008

Abstract

The increasing trend toward complex software systems has highlighted the need to incorporate quality requirements earlier in the
development cycle. We propose a new methodology for monitoring quality in the earliest phases of real-time reactive system (RTRS)
development. The targeted quality characteristics are functional complexity, performance, reliability, architectural complexity, maintain-
ability, and test coverage. All these characteristics should be continuously monitored throughout the RTRS development cycle, to pro-
vide decision support and detect the first signs of low or decreasing quality as the system design evolves. The ultimate goal of this
methodology is to assist developers in dealing with complex user requirements and ensure that the formal development process yields
a high-quality application. Each aspect of quality monitoring is formalized mathematically and illustrated using a train–gate–controller
case study.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Real-time reactive systems; Quality measurement model; Early reliability assessment; Markov chains; Information theory; Complexity;
Maintainability; Performance

1. Introduction

The number of mission-critical software applications
with a high cost of failure has increased exponentially
in recent years, and the need for quality control early
in the development process is now greater than ever.
This is especially true of real-time reactive systems
(RTRS), which are inherently complex and continuously
interact with their environment (Harel and Pnueli, 1985).
(In the context of this paper, the term ‘‘system” is
restricted to mean a ‘‘software system”.) RTRS systems
are used for patient control, air traffic control, nuclear

power plants, ‘‘intelligent” highways, and telecommunica-
tion. Factors contributing to RTRS complexity include
time constraints on stimuli and responses, strict safety
requirements, complex sequencing of events, and increas-
ingly uncertain environments.

Research Goal. For the purposes of software quality
monitoring, the development and evolution of an RTRS
has a number of important requirements (Asling Microsys-
tems, Inc., 2007):

� Responsibility for RTRS software quality is not con-
fined to the final product testing stage. Quality control
should be applied continually throughout the system’s
initial development stages.
� A pre-defined, quantified level of reliability is

demanded.
� High-quality testing is also required to guarantee the

safety and reliability of the system.

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.12.808

q This work is supported by Grant from Natural Sciences and
Engineering Research Council, Canada to the first author.

* Corresponding author. Tel.: +1 514 848 2424x7810; fax: +1 514 848 28
30.

E-mail address: ormandj@cse.concordia.ca (O. Ormandjieva).

www.elsevier.com/locate/jss

Available online at www.sciencedirect.com

The Journal of Systems and Software 81 (2008) 1738–1753

mailto:ormandj@cse.concordia.ca


� Any characteristics of the system critical to performance
or safety, such as timing constraints, must operate
within quantifiable limits.
� RTRS software places additional and exacting demands

on the software quality monitoring. The underlying
quality measurements must be theoretically valid, accu-
rate, and repeatable.

The purpose of this paper is to describe a formal, robust
quality monitoring methodology which guarantees that all
these requirements are met.

Approach. This paper shows how to monitor quality in
the early phases of development by building measurement
mechanisms into the process. The goal is to provide contin-
uous feedback on the effect of development activities on the
quality goals listed above, which are defined in terms of
user requirements, scenarios, and other artifacts. In this
manner quality requirements can be incorporated into the
RTRS at the outset, rather than by adjusting the code once
the system is operational and testing begins. Needless to
say, the latter solution is far from cost-effective.

We have derived a hierarchical quality measurement
model (IEEE Std 1061, 1998; Fenton and Pleefeger, 1998)
to support the early phases of RTRS development, along
with a monitoring mechanism to collect theoretically valid
measurements, analyze them, and provide timely feedback
on the phase in which the data originated. Our quality
model incorporates functional complexity, performance,
reliability, architectural complexity, maintainability, and
test coverage (see Fig. 1). We also include an algorithm
for optimizing a budget-limited selection of test cases. This
choice of quality characteristics is inspired by the ISO/IEC
9126-1 international standard (International Standard
ISO/IEC, 2007).

The measurement methods described in this paper is
independent of the implementation and allows for quality
monitoring during the specification, design, and scenario-
based testing processes. Furthermore, this independence
allows the impact of a change to the evolving RTRS to
be assessed before the change is authorized.

Contributions. The proposed RTRS quality measure-
ment model includes several innovations: (i) integration

with a formal development framework; (ii) a mathematical
basis for the quality measurements; and (iii) its applicabil-
ity to early phases of the development. To the best of our
knowledge, the software industry currently lacks a contin-
uous quality monitoring mechanism with these advantages.
We believe that the proposed model will also increase the
quality of requirements specification, system design, and
scenario-based testing, thereby decreasing the probability
of development errors and increasing the dependability of
the final product.

The monitoring mechanism continuously collects and
processes quality measurements, and uses the data to pro-
vide timely feedback on whether quality requirements are
being met. The railroad crossing (Heitmeyer and Mandrioli,
1996) example, a benchmark case in the real-time systems
community, is used throughout this paper to illustrate
quality measurements and the role of quality monitoring
in each phase.

Organization of the paper. The rest of the paper is
organized as follows: Section 2 introduces a RTRS pro-
cess model and development environment. This will
serve as a generic setting for the paper, and is used
to define the context for the quality monitoring model.
Section 3 briefly reviews related work on quality model-
ing in RTRS, and describes our proposal in this con-
text. Sections 4–6 develop the model in more detail
and illustrate quality measurement methods using the
case study; related work is also mentioned here where
applicable. The paper concludes in Section 7 with a
summary of major contributions and suggestions for
future research.

2. Development environment

This section introduces the formal model and a RTRS
development environment. The quality monitoring process
is explained in the context of a research test bed called
TROMLAB (Alagar, 2001). This test bed uses a timed,
labeled transition system to construct reactive objects.
The specifications and design of the RTRS can be com-
posed, edited, and refined using the visual tool Rational
Rose, which automatically translates changes to formal
notation.

The process requires a formal model of the environment
to be integrated with the system’s elements. An analysis
phase establishes interaction patterns between surrounding
objects and the system, then defines their associated pro-
cessing and timing requirements. Functional and timing
requirements for the RTRS itself can then be identified
and translated into formal specifications. The specifications
are parsed automatically, checked for appropriate syntax,
and mapped to an internal representation. This representa-
tion is used to simulate the system’s behavior during the
design and development phases, enabling a systematic val-
idation of the system before it is implemented. Scenario-
based test cases are automatically generated from the
specifications.Fig. 1. RTRS quality model.

O. Ormandjieva et al. / The Journal of Systems and Software 81 (2008) 1738–1753 1739



Download English Version:

https://daneshyari.com/en/article/461716

Download Persian Version:

https://daneshyari.com/article/461716

Daneshyari.com

https://daneshyari.com/en/article/461716
https://daneshyari.com/article/461716
https://daneshyari.com

