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a b s t r a c t

The transfer property for the generalized Browder’s theorem both of the tensor product
and of the left-right multiplication operator will be characterized in terms of the B-Weyl
spectrum inclusion. In addition, the isolated points of these two classes of operators will
be fully characterized.
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1. Introduction

In the recent past the relationship between, on the one hand,Weyl and Browder’s theorems and their generalizations and,
on the other, tensor products and elementary operators has been intensively studied, see for example [1–8]. In particular,
given two operators that satisfy Browder’s theorem, it is proved in [6] that a necessary and sufficient condition for the
tensor product operator to satisfy Browder’s theorem is that theWeyl spectrum identity holds, see the latter cited article or
Section 4.

The main objective of this work is to characterize when given two operators that satisfy the generalized Browder’s
theorem, the tensor product operator also satisfies the generalized Browder’s theorem, using in particular the B-Weyl
spectrum identity. Furthermore, since one inclusion always holds for operators satisfying the generalized Browder’s
theorem, it is enough to consider the B-Weyl spectrum inclusion, see Section 4. It is worth noticing that since Browder’s
and the generalized Browder’s theorem are equivalent [9], the results of this work also provide a characterization for the
transfer property of the Browder’s theorem for the tensor product operator.

However, to prove the key characterization of Section 4, the set of isolated points of the tensor product operator need to be
studied. In particular, after Section 2where several basic definitions and facts will be recalled, the poles and the complement
of the poles in the isolated points of the tensor product operator will be characterized in terms of the corresponding sets
of the source operators. It is important to note that these results continue and deepen the characterization of the isolated
points of the tensor product operator presented in [3, see Section 3].

Finally, since the same arguments can be applied to the left–right multiplication operator, similar characterizations will
be proved for elementary operators.
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2. Preliminary definitions

From now on X and Y shall denote infinite dimensional complex Banach spaces and B(X, Y) the algebra of all bounded
linearmaps defined onX andwith values inY. As usual, whenX = Y, B(X, X) = B(X). Given A ∈ B(X),N(A), R(A), σ (A)
and σa(A) will stand for the null space, the range, the spectrum and the approximate point spectrum of A respectively. In
addition, X∗ will denote the dual space of X, and if A ∈ X, then A∗

∈ B(X∗) will stand for the adjoint map of A.
Recall that A ∈ B(X) is said to be aWeyl operator, if the dimensions both of N(A) and of X/R(A) are finite and equal. Let

σw(A) be the Weyl spectrum of A, i.e., σw(A) = {λ ∈ C: A − λ is not Weyl}, where A − λ stands for A − λI, I the identity
map of X. Note, in addition, that the concept of Weyl operator has been generalized recently. An operator A ∈ B(X) will
be said to be B-Weyl, if there exists n ∈ N for which the range of R(An) is closed and the induced operator An ∈ B(R(An)) is
Weyl [10]. It is worth noticing that if for some n ∈ N, An ∈ B(R(An)) is Weyl, then Am ∈ B(R(Am)) is Weyl for allm ≥ n [11].
Naturally, from this class of operators the B-Weyl spectrum of A ∈ B(X) can be derived in the usual way; this spectrumwill
be denoted by σBW (A).

On the other hand, a Banach space operator A ∈ B(X) is said to be Drazin invertible, if there exists a necessarily unique
B ∈ B(X) and somem ∈ N such that

Am
= AmBA, BAB = B, AB = BA.

If DR(B(X)) = {A ∈ B(X): A is Drazin invertible}, then the Drazin spectrum of A ∈ B(X) is the set σDR(A) = {λ ∈ C: A−λ ∉

DR(B(X))} [12,13].
The ascent (respectively the descent) of A ∈ B(X) is the smallest non-negative integer a = asc(A) (respectively

d = dsc(A)) such that N(Aa) = N(Aa+1) (respectively R(Ad) = R(Ad+1)); if such an integer does not exist, then asc(A) = ∞

(respectively dsc(A) = ∞). Recall that λ ∈ σ(A) is said to be a pole of A, if the ascent and the descent of A − λ are finite
(hence equal). The set of poles of A ∈ B(X) will be denoted by Π(A). Note that Π(A) = σ(A) \ σDR(A) [14, Theorem 4]. In
particular, if A ∈ B(X) is quasi-nilpotent, then according to [14, Theorem 5], necessary and sufficient for A to be nilpotent
is that Π(A) = {0}. In addition, the set of poles of finite rank of A is the set Π0(A) = {λ ∈ Π(A):α(A − λ) < ∞}, where
α(A − λ) = dimN(A − λ).

Recall that an operator A ∈ B(X) is said to satisfy Browder’s theorem, if σw(A) = σ(A) \ Π0(A), while A is said to satisfy
the generalized Browder’s theorem, if σBW (A) = σ(A) \ Π(A) = σDR(A). According to [9, Theorem 2.1], the Browder’s and
generalized Browder’s theorems are equivalent. Moreover, according to [15, Theorem 2.1(iv)], the generalized Browder’s
theorem is equivalent to the fact that acc σ(A) ⊆ σBW (A). Here and elsewhere in this article, for K ⊆ C, iso K will stand for
the set of isolated points of K and acc K = K\ iso K for the set of limit points of K . The generalized Browder’s theorem was
studied in [8,9,15–17].

In what follows, given Banach spaces X and Y, X⊗Y will stand for the completion, endowed with a reasonable uniform
cross-norm, of the algebraic tensor productX⊗Y ofX andY. In addition, if A ∈ B(X) and B ∈ B(Y), then A⊗B ∈ B(X⊗Y)
will denote the tensor product operator defined by A and B.

On the other hand, τAB ∈ B(B(Y, X)) will denote the multiplication operator defined by A ∈ B(X) and B ∈ B(Y), i.e.,
τAB(U) = AUB, where U ∈ B(Y, X) and X and Y are two Banach spaces. Note that τAB = LARB, where LA ∈ B(B(Y, X))
and RB ∈ B(B(Y, X)) are the left and right multiplication operators defined by A and B respectively, i.e., LA(U) = AU and
RB(U) = UB,U ∈ B(Y, X).

3. The isolated points

In this section the isolated points both of the tensor product and of the left–right multiplication operator will be studied.
To this end, some preparation is needed.

Remark 3.1. Let X be a Banach space, consider A ∈ B(X) and set I(A) = iso σ(A) \ Π(A).

(i) Necessary and sufficient for λ ∈ σ(A) to belong to I(A) is that there exist M and N , two closed and complemented
subspaces of X invariant for A, such that if A1 = A |M and A2 = A |N , then A1 − λ is quasi-nilpotent but not nilpotent
and A2 − λ is invertible. Note that σ(A) = I(A) = {λ} if and only if N = 0.

(ii) Let λ ∈ σ(A). The complex number λ belongs to Π(A) if and only if there areM ′ and N ′ two closed and complemented
subspaces of X invariant for A, such that if A′

= A |M ′ and A′′
= A |N ′ , then A′

− λ is nilpotent and A′′
− λ is invertible.

As in statement (i), σ(A) = Π(A) = {λ} is equivalent to the fact that N ′
= 0.

Statements (i)–(ii) are well known and they can be easily deduced from [13, Theorem 12] and [14, Theorem 5]. Now let
Y be a Banach space and consider B ∈ B(Y).

(iii) Since σ(A ⊗ B) = σ(A)σ (B) = σ(τAB) [18, Theorem 2.1] and [19, Corollary 3.4], according to [3, Theorem 6],

(iso σ(A ⊗ B)) \ {0} = (iso (τAB)) \ {0} = (iso σ(A) \ {0})(iso σ(B) \ {0}).

(iv) Set

L = (I(A) \ {0})(I(B) \ {0}) ∪ (I(A) \ {0})(Π(B) \ {0}) ∪ (Π(A) \ {0})(I(B) \ {0}).

Then clearly, (iso σ(A ⊗ B)) \ {0} = (iso (τAB)) \ {0} = L ∪ (Π(A) \ {0})(Π(B) \ {0}).
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