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a b s t r a c t

For a large class of Cantor sets on the real-line, we find sufficient and necessary conditions
implying that a set has positive (resp. null) measure for all doubling measures of the real-
line. We also discuss same type of questions for atomic doubling measures defined on
certain midpoint Cantor sets.
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1. Introduction and notation

Our main goal in this paper is to study the size of Cantor sets on the real-line R from the point of view of doubling
measures. Recall that a measure µ on a metric space X is called doubling if there is a constant c < ∞ such that

0 < µ(B(x, 2r)) ≤ cµ(B(x, r)) < ∞

for all x ∈ X and r > 0. Here B(x, r) is the open ball with centre x ∈ X and radius r > 0. We note that the collection of
doubling measures on R, and more generally, on any complete doubling metric space where isolated points are not dense,
is rather rich. For instance, given ε > 0, there are doubling measures on R having full measure on a set of Hausdorff and
packing dimension at most ε. See [1–4].

Let D(R) be the collection of all doubling measures on R and denote

T = {C ⊂ R : µ(C) = 0 for all µ ∈ D(R)},

F = {C ⊂ R : µ(C) > 0 for all µ ∈ D(R)}.

In the literature, the sets in F have been called quasisymmetrically thick [1,5], thick for doubling measures [6], and very
fat [7] and those in T have been termed quasisymmetrically null [1,5], null for doubling measures [6], and thin [7]. We call
C ⊂ R thin if C ∈ T and fat if C ∈ F .

In this paper, we address the problems of finding sufficient and/or necessary conditions for a Cantor set C ⊂ R to be
fat (resp. thin). These problems arise naturally from the study of compression and expansion properties of quasisymmetric
maps f :R → R; see [1, 13.20]. A related problem is to characterise those subsets U ⊂ R which carry nontrivial doubling
measures [8, Open problem 1.18]; if C ⊂ R is a fat Cantor set, then it is easy to see that U = R \ C does not carry nontrivial
doubling measures. For if it did, then one could extend any doubling measure µ on U to R by letting µ(C) = 0, and this
would contradict C being fat.

We begin by discussing thinness and fatness for themiddle interval Cantor sets C(αn) determined via sequences (αn)
∞

n=1,
0 < αn < 1, as follows. We first remove an open interval of length α1 from the middle of I1,1 = [0, 1] and denote the

∗ Corresponding author.
E-mail addresses: csornyei@math.uchicago.edu (M. Csörnyei), ville.suomala@oulu.fi (V. Suomala).

0022-247X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.04.035

http://dx.doi.org/10.1016/j.jmaa.2012.04.035
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:csornyei@math.uchicago.edu
mailto:ville.suomala@oulu.fi
http://dx.doi.org/10.1016/j.jmaa.2012.04.035


M. Csörnyei, V. Suomala / J. Math. Anal. Appl. 393 (2012) 680–691 681

remaining two intervals by I2,1 and I2,2. At the kth step, k ≥ 2, we have 2k−1 intervals Ik,1, . . . , Ik,2k−1 of length ℓk =

2−k+1k−1
n=1(1 − αn) and we remove an interval of length αkℓk from the middle of each Ik,i. Finally, the middle interval

Cantor set C = C(αn) is defined by

C =


k∈N

2k
i=1

Ik,i.

The theorem below follows by combining results of Wu [9, Theorem 1], Staples and Ward [5, Theorem 1.4], and Buckley
et al. [7, Theorem 0.3]. For 0 < p < ∞, we denote by ℓp the set of all sequences (αn)

∞

n=1, 0 < αn < 1, for which


∞

n=1
α

p
n < ∞.

Theorem 1.1. Let C = C(αn). Then

(1) C is thin if and only if (αn) ∉


0<p<∞
ℓp.

(2) C is fat if and only if (αn) ∈


0<p<∞
ℓp.

In a recent paper, Han et al. [6] generalised Theorem 1.1 for a broader collection of (still very symmetric) Cantor sets.
Related results on thin and fat sets may be found in [3,5,7,9–12].

The known proofs for Theorem 1.1 and its generalisation in [6] rely heavily on the symmetries of the sets C(αn). In
this paper, we wish to consider analogues of Theorem 1.1 for Cantor sets with much less symmetry. To be more precise,
we introduce the following notation. Suppose that for each n ∈ N, we have a collection of closed intervals In = {In,i}i
with mutually disjoint interiors and open intervals Jn = {Jn,i ⊂ In,i} such that each In+1,i is a subset of some In,j,

In+1 =


In \


Jn and that supj |In,j| → 0 as n → ∞. We also assume that


I1 is bounded. We refer to {In, Jn}n as
a Cantor construction. The resulting Cantor set is given by

C = C{In,Jn} =


n


i

In,i.

Given the collections In and Jn as above, we also denote I =


n In and J =


n Jn. If there exists 0 < c < 1 so that
cIn,i


Jn,i ≠ ∅ for all In,i, we say that our Cantor construction (and set) is nice.1Here cIn,i denotes the interval concentric

with In,i and with length c|In,i|. Furthermore, given a sequence 0 < αn < 1, we say that the Cantor set C = C{In,Jn}n is
(αn)-porous if |Jn,i| ≥ αn|In,i| for all In,i ∈ In and (αn)-thick, if |Jn,i| ≤ αn|In,i| for all In,i. Finally, C is called (αn)-regular if
λαn|In,i| ≤ |Jn,i| ≤ Λαn|In,i| for all In,i (here 0 < λ ≤ Λ < ∞ are constants that do not depend on n nor i). We underline
that these definitions do not refer only to the set C but also to the construction of C via {In, Jn}n.

Remarks 1.2. (a) Using our notation, it is possible that a Cantor set C contains isolated points as some of the intervals In,i
could be degenerated. We allow this for technical reasons although in most interesting cases, e.g. if C is nice, the set C is a
true Cantor set in the sense that it has no isolated points.
(b) Observe that in our definitions, we do not impose any conditions on the number or relative size of the intervals
In+1,j ⊂ In,i. Note also that In+1,i ∈ In+1 does not have to be a component of any In,j \ Jn,j.
(c) We formulate our results for Cantor sets, but it is reasonable to speak about (αn)-porosity and (αn)-thickness for general
subsets of R and not only for the ones obtained from Cantor constructions. Roughly speaking, A ⊂ R is (αn)-porous if it is
contained in an (αn)-porous Cantor set and (αn)-thick, if it contains an (αn)-thick Cantor sets. See [3,5] for more details. In
Section 4 we provide a notion of (αn)-porosity which is useful in any metric space.

Our main result concerning doubling measures and Cantor sets is the following theorem.

Theorem 1.3. Suppose that C = C{In,Jn} is a nice Cantor set. Then, for each 0 < p < ∞, there is µ ∈ D(R) and 0 <
λ ≤ Λ < ∞ so that

λ


|Jn,i|
|In,i|

p

≤
µ(Jn,i)
µ(In,i)

≤ Λ


|Jn,i|
|In,i|

p

(1.1)

for each In,i.

Remark 1.4. This result is interesting already for the middle interval Cantor sets C(αn). After the submission of this paper,
we were informed that for uniform Cantor sets, the result has been proved independently by Peng andWen. See [13] for the
precise formulation of their result.

Let us now discuss what can be said about the validity of Theorem 1.1 for the general Cantor sets C{In,Jn}. Observe that
Theorem 1.1 includes the following four statements:

1 Geometrically, this only means that if the removed holes Jn,i are small, then they cannot lie too close to the boundary of In,i .
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