

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Self-adjoint, unitary, and normal weighted composition operators in several variables

Trieu Le

Department of Mathematics and Statistics, University of Toledo, Mail Stop 942, Toledo, OH 43606, United States

ARTICLE INFO

Article history: Received 31 July 2011 Available online 4 June 2012 Submitted by E.J. Straube

Keywords: Weighted composition operators Self-adjoint operators Normal operators Reproducing kernel Hilbert spaces

1. Introduction

ABSTRACT

We study weighted composition operators on Hilbert spaces of analytic functions on the unit ball with kernels of the form $(1 - \langle z, w \rangle)^{-\gamma}$ for $\gamma > 0$. We find necessary and sufficient conditions for the adjoint of a weighted composition operator to be a weighted composition operator. We then obtain characterizations of self-adjoint and unitary weighted composition operators. Normality of these operators is also investigated.

© 2012 Elsevier Inc. All rights reserved.

Let \mathbb{B}_n denote the open unit ball in \mathbb{C}^n . For \mathcal{H} a Banach space of analytic functions on \mathbb{B}_n and φ an analytic self-map of \mathbb{B}_n , the composition operator C_{φ} is defined by $C_{\varphi}h = h \circ \varphi$ for h in \mathcal{H} for which the function $h \circ \varphi$ also belongs to \mathcal{H} . Researchers have been interested in studying how the function theoretic behavior of φ affects the properties of C_{φ} on \mathcal{H} and vice versa. When \mathcal{H} is a classical Hardy space or a weighted Bergman space of the unit disk, it follows from Littlewood Subordination Theorem that C_{φ} is bounded on \mathcal{H} (see, for example, [1, Section 3.1]). On the other hand, the situation becomes more complicated in higher dimensions. For $n \geq 2$, there exist unbounded composition operators on the Hardy and Bergman spaces of \mathbb{B}_n , even with polynomial mappings. The interested reader is referred to [1, Chapter 3] for these examples and certain necessary and sufficient conditions for the boundedness and compactness of C_{φ} .

Let $f : \mathbb{B}_n \to \mathbb{C}$ be an analytic function and let φ be as above. The weighted composition operator $W_{f,\varphi}$ is defined by $W_{f,\varphi}h = f \cdot (h \circ \varphi)$ for all $h \in \mathcal{H}$ for which the function $f \cdot (h \circ \varphi)$ also belongs to \mathcal{H} . Weighted composition operators have arisen in the work of Forelli [2] on isometries of classical Hardy spaces H^p and in Cowen's work [3,4] on commutants of analytic Toeplitz operators on the Hardy space H^2 of the unit disk. Weighted composition operators have also been used in descriptions of adjoints of composition operators (see [5] and the references therein). Boundedness and compactness of weighted composition operators on various Hilbert spaces of analytic functions have been studied by many mathematicians (see, for example, [6–9] and references therein). Recently researchers have started investigating the relations between weighted composition operators and their adjoints. Cowen and Ko [10] and Cowen et al. [11] characterize self-adjoint weighted composition operators and study their spectral properties on weighted Hardy spaces on the unit disk whose kernel functions are of the form $K_w(z) = (1 - \overline{w}z)^{-\kappa}$ for $\kappa \geq 1$. In [12], Bourdon and Narayan study normal weighted composition operators on the Hardy space H^2 . They characterize unitary weighted composition operators and apply their characterize to describe all normal operators $W_{f,\varphi}$ in the case φ fixes a point in the unit disk.

The purpose of the current paper is to study self-adjoint, unitary and normal weighted composition operators on a class of Hilbert spaces \mathcal{H} of analytic functions on the unit ball. We characterize $W_{f,\varphi}$ whose adjoint is a weighted composition

E-mail addresses: trieu.le2@utoledo.edu, trieule@ub-alumni.org.

 $^{0022\}text{-}247X/\$$ – see front matter © 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.05.065

operator or the inverse of a weighted composition operator. As a consequence, we generalize certain results in [12,10,11] to higher dimensions and also obtain results that have not been previously known in one dimension.

For any real number $\gamma > 0$, let H_{γ} denote the Hilbert space of analytic functions on \mathbb{B}_n with reproducing kernel functions

$$K_{z}^{\gamma}(w) = K^{\gamma}(w, z) = \frac{1}{(1 - \langle w, z \rangle)^{\gamma}} \text{ for } z, w \in \mathbb{B}_{n}.$$

By definition, H_{γ} is the completion of the linear span of $\{K_z^{\gamma} : z \in \mathbb{B}_n\}$ with the inner product $\langle K_z^{\gamma}, K_w^{\gamma} \rangle = K^{\gamma}(w, z)$ (this is indeed an inner product due to the positive definiteness of $K^{\gamma}(w, z)$). It is well known that any function $f \in H_{\gamma}$ is analytic on \mathbb{B}_n and for $z \in \mathbb{B}_n$, we have $f(z) = \langle f, K_z^{\gamma} \rangle$.

For any multi-index $m = (m_1, \ldots, m_n) \in \mathbb{N}_0^n$ (here \mathbb{N}_0 denotes the set of non-negative integers) and $z = (z_1, \ldots, z_n) \in \mathbb{B}_n$, we write $z^m = z_1^{m_1} \cdots z_n^{m_n}$. It turns out that H_{γ} has an orthonormal basis consisting of constant multiplies of the monomials z^m , for $m \in \mathbb{N}_0^n$. The spaces H_{γ} belong to the class of weighted Hardy spaces introduced by Cowen and MacCluer in [1, Section 2.1]. They are called (generalized) weighted Bergman spaces by Zhao and Zhu in [13] because of their similarities with other standard weighted Bergman spaces on the unit ball. In fact, for $\gamma > n$, H_{γ} is the weighted Bergman space $A_{\gamma-n-1}^2(\mathbb{B}_n)$, which consists of all analytic functions that are square integrable with respect to the weighted Lebesgue measure $(1 - |z|^2)^{\gamma-n-1}dV(z)$, where dV is the Lebesgue volume measure on \mathbb{B}_n . If $\gamma = n$, H_n is the usual Hardy space on \mathbb{B}_n . When $n \ge 2$ and $\gamma = 1$, H_1 is the so-called Drury–Arveson space, which has been given a lot of attention lately in the study of multi-variable operator theory and interpolation (see [14, 15] and the references therein). For arbitrary $\gamma > 0$, H_{γ} coincides with the space $A_{\gamma-n-1}^2(\mathbb{B}_n)$ in [13] (we warn the reader that when $\gamma < n$, the space $A_{\gamma-n-1}^2(\mathbb{B}_n)$ is not defined as the space of analytic functions that are square integrable with respect to $(1 - |z|^2)^{\gamma-n-1}dV(z)$, since the latter contains only the zero function).

2. Bounded weighted composition operators

As we mentioned in the Introduction, the composition operator C_{φ} is not always bounded on H_{γ} of the unit ball \mathbb{B}_n when $n \ge 2$. On the other hand, if φ is a linear fractional self-map of the unit ball, then it was shown by Cowen and MacCluer [16] that C_{φ} is bounded on the Hardy space and all weighted Bergman spaces of \mathbb{B}_n . It turns out, as we will show below, that for such φ , C_{φ} is always bounded on H_{γ} for any $\gamma > 0$. We will need the following characterization of H_{γ} , which follows from [13, Theorem 13].

For any multi-index $m = (m_1, ..., m_n)$ of non-negative integers and any analytic function h on \mathbb{B}_n , we write $\partial^m h = \frac{\partial^{|m|_h}}{\partial z_1^{m_1} \cdots \partial z_n^{m_n}}$, where $|m| = m_1 + \cdots + m_n$. For any real number α , put $d\mu_{\alpha}(z) = (1 - |z|^2)^{-n-1+\alpha} dV(z)$, where dV is the usual Lebesgue measure on the unit ball \mathbb{B}_n .

Theorem 2.1. Let $\gamma > 0$. The following conditions are equivalent for an analytic function h on \mathbb{B}_n .

- (a) h belongs to H_{γ} .
- (b) For some non-negative integer k with $2k + \gamma > n$, all the functions $\partial^m h$, where |m| = k, belong to $L^2(\mathbb{B}_n, d\mu_{\gamma+2k})$.
- (c) For every non-negative integer k with $2k + \gamma > n$, all the functions $\partial^m h$, where |m| = k, belong to $L^2(\mathbb{B}_n, d\mu_{\gamma+2k})$.

Remark 2.2. Theorem 2.1 in particular shows that for any given positive number *s*, the function *h* belongs to H_{γ} if and only if for any multi-index *l* with |l| = s, $\partial^l h$ belongs to $H_{\gamma+2s}$. As a consequence, $H_{\gamma_1} \subset H_{\gamma_2}$ whenever $\gamma_1 \leq \gamma_2$.

Recall that the multiplier space $Mult(H_{\gamma})$ of H_{γ} is the space of all analytic functions f on \mathbb{B}_n for which fh belongs to H_{γ} , whenever h belongs to H_{γ} . Since norm convergence in H_{γ} implies point-wise convergence on \mathbb{B}_n , it follows from the closed graph theorem that f is a multiplier if and only if the multiplication operator M_f is bounded on H_{γ} . It is well known that $Mult(H_{\gamma})$ is contained in H^{∞} , the space of bounded analytic functions on \mathbb{B}_n . For $\gamma \ge n$, it holds that $Mult(H_{\gamma}) = H^{\infty}$. This follows from the fact that for such γ the norm on H_{γ} comes from an integral. On the other hand, when $n \ge 2$ and $\gamma = 1$ (hence H_{γ} is the Drury–Arveson space), $Mult(H_{\gamma})$ is strictly smaller than H^{∞} (see [14, Remark 8.9] or [15, Theorem 3.3]). However we will show that if f and all of its partial derivatives are bounded on \mathbb{B}_n , then f is a multiplier of H_{γ} for all $\gamma > 0$.

Lemma 2.3. Let f be a bounded analytic function such that for each multi-index m, the function $\partial^m f$ is bounded on \mathbb{B}_n . Then f belongs to $Mult(H_{\gamma})$, and hence the operator M_f is bounded on H_{γ} for any $\gamma > 0$.

Proof. Let $\gamma > 0$ be given. Choose a positive integer k such that $\gamma + 2k > n$. Let h belong to H_{γ} . For any multi-index m with |m| = k, the derivative $\partial^m(fh)$ is a linear combination of products of the form $(\partial^t f)(\partial^s h)$ for multi-indexes s, t with s + t = m. For such s and $t, \partial^s h$ belongs to $H_{\gamma+2|s|} \subset H_{\gamma+2k}$ (by Remark 2.2) and $\partial^t f$, which is bounded by the hypothesis, is a multiplier of $H_{\gamma+2k}$ (since $Mult(H_{\gamma+2k}) = H^{\infty}$). Thus, $(\partial^t f)(\partial^s h)$ belongs to $H_{\gamma+2k}$. Therefore, $\partial^m(fh)$ belongs to $H_{\gamma+2k}$. By Theorem 2.1, fh is in H_{γ} . Since h was arbitrary in H_{γ} , we conclude that f is a multiplier of H_{γ} .

Download English Version:

https://daneshyari.com/en/article/4617339

Download Persian Version:

https://daneshyari.com/article/4617339

Daneshyari.com