

Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/jmaa)

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Self-adjoint, unitary, and normal weighted composition operators in several variables

Trieu Le

Department of Mathematics and Statistics, University of Toledo, Mail Stop 942, Toledo, OH 43606, United States

a r t i c l e i n f o

Article history: Received 31 July 2011 Available online 4 June 2012 Submitted by E.J. Straube

Keywords: Weighted composition operators Self-adjoint operators Normal operators Reproducing kernel Hilbert spaces

1. Introduction

a b s t r a c t

We study weighted composition operators on Hilbert spaces of analytic functions on the unit ball with kernels of the form $(1 - \langle z, w \rangle)^{-\gamma}$ for $\gamma > 0$. We find necessary and sufficient conditions for the adjoint of a weighted composition operator to be a weighted composition operator or the inverse of a weighted composition operator. We then obtain characterizations of self-adjoint and unitary weighted composition operators. Normality of these operators is also investigated.

© 2012 Elsevier Inc. All rights reserved.

Let \mathbb{B}_n denote the open unit ball in \mathbb{C}^n . For $\mathcal H$ a Banach space of analytic functions on \mathbb{B}_n and φ an analytic self-map of \mathbb{B}_n , the composition operator C_φ is defined by $C_\varphi h = h \circ \varphi$ for *h* in $\mathcal H$ for which the function $h \circ \varphi$ also belongs to $\mathcal H$. Researchers have been interested in studying how the function theoretic behavior of φ affects the properties of C_φ on $\mathcal H$ and vice versa. When H is a classical Hardy space or a weighted Bergman space of the unit disk, it follows from Littlewood Subordination Theorem that C_ω is bounded on $\mathcal H$ (see, for example, [\[1,](#page--1-0) Section 3.1]). On the other hand, the situation becomes more complicated in higher dimensions. For $n \geq 2$, there exist unbounded composition operators on the Hardy and Bergman spaces of B*n*, even with polynomial mappings. The interested reader is referred to [\[1,](#page--1-0) Chapter 3] for these examples and certain necessary and sufficient conditions for the boundedness and compactness of *C*ϕ.

Let $f : \mathbb{B}_n \to \mathbb{C}$ be an analytic function and let φ be as above. The weighted composition operator $W_{f, \varphi}$ is defined by $W_{f,\omega}$ *h* = *f* · (*h* ◦ φ) for all *h* ∈ H for which the function *f* · (*h* ◦ φ) also belongs to H. Weighted composition operators have arisen in the work of Forelli [\[2\]](#page--1-1) on isometries of classical Hardy spaces H^p and in Cowen's work [\[3,](#page--1-2)[4\]](#page--1-3) on commutants of analytic Toeplitz operators on the Hardy space H² of the unit disk. Weighted composition operators have also been used in descriptions of adjoints of composition operators (see [\[5\]](#page--1-4) and the references therein). Boundedness and compactness of weighted composition operators on various Hilbert spaces of analytic functions have been studied by many mathematicians (see, for example, [\[6–9\]](#page--1-5) and references therein). Recently researchers have started investigating the relations between weighted composition operators and their adjoints. Cowen and Ko [\[10\]](#page--1-6) and Cowen et al. [\[11\]](#page--1-7) characterize self-adjoint weighted composition operators and study their spectral properties on weighted Hardy spaces on the unit disk whose kernel functions are of the form $K_w(z)=(1-\overline{w}z)^{-\kappa}$ for $\kappa\geq 1$. In [\[12\]](#page--1-8), Bourdon and Narayan study normal weighted composition operators on the Hardy space H². They characterize unitary weighted composition operators and apply their characterization to describe all normal operators $W_{f, \varphi}$ in the case φ fixes a point in the unit disk.

The purpose of the current paper is to study self-adjoint, unitary and normal weighted composition operators on a class of Hilbert spaces $\mathcal H$ of analytic functions on the unit ball. We characterize $W_{f,\varphi}$ whose adjoint is a weighted composition

E-mail addresses: [trieu.le2@utoledo.edu,](mailto:trieu.le2@utoledo.edu) [trieule@ub-alumni.org.](mailto:trieule@ub-alumni.org)

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2012 Elsevier Inc. All rights reserved. [doi:10.1016/j.jmaa.2012.05.065](http://dx.doi.org/10.1016/j.jmaa.2012.05.065)

operator or the inverse of a weighted composition operator. As a consequence, we generalize certain results in [\[12](#page--1-8)[,10,](#page--1-6)[11\]](#page--1-7) to higher dimensions and also obtain results that have not been previously known in one dimension.

For any real number $\gamma > 0$, let H_ν denote the Hilbert space of analytic functions on \mathbb{B}_n with reproducing kernel functions

$$
K_z^{\gamma}(w) = K^{\gamma}(w, z) = \frac{1}{(1 - \langle w, z \rangle)^{\gamma}} \quad \text{for } z, w \in \mathbb{B}_n.
$$

By definition, H_γ is the completion of the linear span of $\{K_z^\gamma : z \in \mathbb{B}_n\}$ with the inner product $\langle K_z^\gamma, K_w^\gamma \rangle = K^\gamma(w,z)$ (this is indeed an inner product due to the positive definiteness of $K^\gamma(w,z)$). It is well known that any function $f\in H_\gamma$ is analytic on \mathbb{B}_n and for $z \in \mathbb{B}_n$, we have $f(z) = \langle f, K_z^{\gamma} \rangle$.

For any multi-index $m = (m_1, \ldots, m_n) \in \mathbb{N}_0^n$ (here \mathbb{N}_0 denotes the set of non-negative integers) and $z = (z_1, \ldots, z_n) \in$ \mathbb{B}_n , we write $z^m = z_1^{m_1} \cdots z_n^{m_n}$. It turns out that H_γ has an orthonormal basis consisting of constant multiplies of the monomials z^m , for $m \in \mathbb{N}_0^n$. The spaces H_γ belong to the class of weighted Hardy spaces introduced by Cowen and MacCluer in [\[1,](#page--1-0) Section 2.1]. They are called (generalized) weighted Bergman spaces by Zhao and Zhu in [\[13\]](#page--1-9) because of their similarities with other standard weighted Bergman spaces on the unit ball. In fact, for $\gamma > n$, H_{γ} is the weighted Bergman space $A^2_{\gamma-n-1}(\Bbb B_n)$, which consists of all analytic functions that are square integrable with respect to the weighted Lebesgue measure $(1-|z|^2)^{\gamma-n-1}dV(z)$, where dV is the Lebesgue volume measure on \mathbb{B}_n . If $\gamma=n$, H_n is the usual Hardy space on \mathbb{B}_n . When $n > 2$ and $\gamma = 1$, H_1 is the so-called Drury–Arveson space, which has been given a lot of attention lately in the study of multi-variable operator theory and interpolation (see [\[14,](#page--1-10)[15\]](#page--1-11) and the references therein). For arbitrary $\gamma > 0$, H_γ coincides with the space $A_{\gamma-n-1}^2(\mathbb{B}_n)$ in [\[13\]](#page--1-9) (we warn the reader that when $\gamma < n$, the space $A_{\gamma-n-1}^2(\mathbb{B}_n)$ is not defined as the space of analytic functions that are square integrable with respect to $(1 - |z|^2)^{\gamma - n - 1} dV(z)$, since the latter contains only the zero function).

2. Bounded weighted composition operators

As we mentioned in the Introduction, the composition operator C_φ is not always bounded on H_γ of the unit ball \mathbb{B}_n when $n \geq 2$. On the other hand, if φ is a linear fractional self-map of the unit ball, then it was shown by Cowen and MacCluer [\[16\]](#page--1-12) that *C*^ϕ is bounded on the Hardy space and all weighted Bergman spaces of B*n*. It turns out, as we will show below, that for such φ , *C*_{φ} is always bounded on *H*_γ for any $\gamma > 0$. We will need the following characterization of *H*_γ, which follows from [\[13,](#page--1-9) Theorem 13].

For any multi-index $m = (m_1, \ldots, m_n)$ of non-negative integers and any analytic function *h* on \mathbb{B}_n , we write $\partial^m h =$ ∂ [|]*m*|*^h* $\frac{\partial^{|m|}h}{\partial z_1^{m_1} \cdots \partial z_n^{m_n}}$, where $|m| = m_1 + \cdots + m_n$. For any real number α , put $d\mu_\alpha(z) = (1 - |z|^2)^{-n-1+\alpha} dV(z)$, where dV is the usual Lebesgue measure on the unit ball B*n*.

Theorem 2.1. Let $\gamma > 0$. The following conditions are equivalent for an analytic function h on \mathbb{B}_n .

- (a) *h* belongs to H_{ν} .
- (b) For some non-negative integer k with $2k + \gamma > n$, all the functions $\partial^m h$, where $|m| = k$, belong to $L^2(\mathbb{B}_n, d\mu_{\gamma+2k})$.
- (c) For every non-negative integer k with 2k + $\gamma > n$, all the functions $\partial^m h$, where $|m| = k$, belong to $L^2(\mathbb{B}_n, d\mu_{\gamma+2k})$.

Remark 2.2. [Theorem 2.1](#page-1-0) in particular shows that for any given positive number *s*, the function *h* belongs to *H*γ if and only if for any multi-index *l* with $|l| = s$, $\partial^l h$ belongs to $H_{\gamma+2s}$. As a consequence, $H_{\gamma_1} \subset H_{\gamma_2}$ whenever $\gamma_1 \leq \gamma_2$.

Recall that the multiplier space Mult(*H*_γ) of *H*_γ is the space of all analytic functions *f* on \mathbb{B}_n for which *fh* belongs to *H*_γ whenever *h* belongs to *H*^γ . Since norm convergence in *H*^γ implies point-wise convergence on B*n*, it follows from the closed graph theorem that *f* is a multiplier if and only if the multiplication operator *M^f* is bounded on *H*γ . It is well known that $\text{Mult}(H_\gamma)$ is contained in H^∞ , the space of bounded analytic functions on \mathbb{B}_n . For $\gamma\geq n$, it holds that Mult $(H_\gamma)=H^\infty$. This follows from the fact that for such γ the norm on H_γ comes from an integral. On the other hand, when $n \geq 2$ and $\gamma = 1$ (hence H_γ is the Drury–Arveson space), Mult(H_γ) is strictly smaller than H^∞ (see [\[14,](#page--1-10) Remark 8.9] or [\[15,](#page--1-11) Theorem 3.3]). However we will show that if *f* and all of its partial derivatives are bounded on \mathbb{B}_n , then *f* is a multiplier of H_γ for all $\gamma > 0$.

Lemma 2.3. *Let f be a bounded analytic function such that for each multi-index m, the function* ∂ *^mf is bounded on* B*n. Then f belongs to* $\text{Mult}(H_\gamma)$ *, and hence the operator* M_f *is bounded on* H_γ *for any* $\gamma > 0$ *.*

Proof. Let $\gamma > 0$ be given. Choose a positive integer *k* such that $\gamma + 2k > n$. Let *h* belong to H_{γ} . For any multi-index *m* with |*m*| = *k*, the derivative ∂ *^m*(*fh*) is a linear combination of products of the form (∂*^t f*)(∂*^sh*) for multi-indexes *s*, *t* with $s+t=m$. For such *s* and *t*, $\partial^s h$ belongs to $H_{\gamma+2|s|}\subset H_{\gamma+2k}$ (by [Remark 2.2\)](#page-1-1) and ∂^tf , which is bounded by the hypothesis, is a multiplier of $H_{\gamma+2k}$ (since Mult $(H_{\gamma+2k})=H^{\infty}$). Thus, $(\partial^t f)(\partial^s h)$ belongs to $H_{\gamma+2k}$. Therefore, $\partial^m(fh)$ belongs to $H_{\gamma+2k}$. By [Theorem 2.1,](#page-1-0) *fh* is in H_{γ} . Since *h* was arbitrary in H_{γ} , we conclude that *f* is a multiplier of H_{γ} .

Download English Version:

<https://daneshyari.com/en/article/4617339>

Download Persian Version:

<https://daneshyari.com/article/4617339>

[Daneshyari.com](https://daneshyari.com/)